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Heat shock proteins (HSPs) are a type of functionally related proteins present in all living organisms, both
prokaryotes and eukaryotes. They play essential roles in protein–protein interactions such as folding and
assisting in the establishment of proper protein conformation and prevention of unwanted protein aggre-
gation. Their dysfunction may cause various life-threatening disorders, such as Parkinson’s, Alzheimer’s,
and cardiovascular diseases. Based on their functions, HSPs are usually classified into six families: (i)
HSP20 or sHSP, (ii) HSP40 or J-class proteins, (iii) HSP60 or GroEL/ES, (iv) HSP70, (v) HSP90, and (vi)
HSP100. Although considerable progress has been achieved in discriminating HSPs from other proteins,
it is still a big challenge to identify HSPs among their six different functional types according to their
sequence information alone. With the avalanche of protein sequences generated in the post-genomic
age, it is highly desirable to develop a high-throughput computational tool in this regard. To take up such
a challenge, a predictor called iHSP-PseRAAAC has been developed by incorporating the reduced amino
acid alphabet information into the general form of pseudo amino acid composition. One of the remark-
able advantages of introducing the reduced amino acid alphabet is being able to avoid the notorious
dimension disaster or overfitting problem in statistical prediction. It was observed that the overall suc-
cess rate achieved by iHSP-PseRAAAC in identifying the functional types of HSPs among the aforemen-
tioned six types was more than 87%, which was derived by the jackknife test on a stringent
benchmark dataset in which none of HSPs included has P40% pairwise sequence identity to any other
in the same subset. It has not escaped our notice that the reduced amino acid alphabet approach can also
be used to investigate other protein classification problems. As a user-friendly web server, iHSP-PseR-
AAAC is accessible to the public at http://lin.uestc.edu.cn/server/iHSP-PseRAAAC.

� 2013 Elsevier Inc. All rights reserved.
Heat shock proteins (HSPs),1 first discovered in 1962 [1], are a
set of functionally related proteins involved in the folding and
unfolding of other proteins. HSPs are ubiquitously expressed in vir-
tually all living organisms from bacteria to humans and function as
intracellular chaperones for other proteins. Their expression is in-
creased when cells are exposed to a wide variety of physiological
and environmental stress conditions such as elevated temperature,
infection, and inflammation [2–4]. They play essential roles in pro-
tein–protein interactions such as folding and assisting for establish-
ing proper protein conformation and in prevention of unwanted
protein aggregation [5,6]. In addition, HSPs are key determinants
of quality control and play a critical role in maintaining the overall
cellular protein homeostasis [7]. Their dysfunction is implicated in
life-threatening disorders, including Parkinson’s, Alzheimer’s, and
cardiovascular diseases [8–10]. The diversified nature of HSPs and
their vast repertoire of functions have drawn considerable attention
among researchers, and extensive studies are in progress to deduce
the intricate cellular functional networks among these proteins [11].

Based on their different functions (Fig. 1), HSPs are generally
classified into the following six families: (i) HSP20 or sHSP, (ii)
HSP40 or J-class proteins, (iii) HSP60 or GroEL/ES, (iv) HSP70, (v)
HSP90, and (vi) HSP100 [11]. Although considerable progress has
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Fig.1. Schematic illustration to show the different biological processes and functions of HSPs from six different families: HSP20, HSP40, HSP60, HSP70, HSP90, and HSP100.
The HSP family members and their associated cofactors function together in complexes, acting in concert as molecular chaperones to facilitate the proper folding and
activation of many cellular proteins. See text for further explanation.
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been achieved in identifying HSPs from other proteins, it is still a
big challenge to identify the families of HSPs according to their se-
quence information alone. With the explosive growth of protein
sequences generated in the post-genomic age, it is highly desirable
to develop automated methods for timely and reliably annotating
their functional types. In view of this, the current study was initi-
ated in an attempt to develop a new predictor by which one can
easily identify the functional types or families of HSPs based on
their sequence information alone.

According to a recent review [12], to establish a really useful
statistical predictor for a biological system, we need to consider
the following procedures: (i) construct or select a valid benchmark
dataset to train and test the predictor; (ii) formulate the biological
samples with an effective mathematical expression that can truly
reflect their intrinsic correlation with the target to be predicted;
(iii) introduce or develop a powerful algorithm (or engine) to oper-
ate the prediction; (iv) properly perform cross-validation tests to
objectively evaluate the anticipated accuracy of the predictor;
and (v) establish a user-friendly web server for the predictor that
is freely accessible to the public. We elaborate how to deal with
these procedures one by one below.
Table 1
Breakdown of the 2225 HSPs in the benchmark dataset S according to their six
subfamilies.

Dataset Family Number of HSP samples

S1 HSP20 357
S2 HSP40 1279
S3 HSP60 163
S4 HSP70 283
S5 HSP90 58
S6 HSP100 85

S Overall 2225
Materials and methods

Benchmark dataset

The sequences of HSPs were taken from the HSPIR database
(http://pdslab.biochem.iisc.ernet.in/hspir), which currently con-
tains 9902 protein sequences encompassing 277 genomes ranging
from prokaryotes to eukaryotes [11]. To reduce homologous bias
and redundancy, the program CD–HIT [13] was used to remove
those HSPs that have P40% pairwise sequence identity to any
other in the same subset. Finally, we obtained a dataset S of
2225 HSPs classified into six families, as can be formulated by

S ¼ S1 [ S2 [ S3 [ S4 [ S5 [ S6; ð1Þ

where the subset S1 contains 357 HSP20 sequences, S2 contains
1279 HSP40 sequences, S3 contains 163 HSP60 sequences, S4 con-
tains 283 HSP70 sequences, S5 contains 58 HSP90 sequences, and
S6 contains 85 HSP100 sequences (Table 1) and where [ represents
the symbol for union in the set theory. For readers’ convenience, the
sequences of the 2225 HSPs and their codes are given in the Supple-
mentary material.

Pseudo amino acid composition and reduced amino acid alphabet

To develop a sequence-based predictor for identifying the attri-
bute of a protein, one of the keys is to formulate its sequence with
an effective mathematical expression that can truly reflect the
intrinsic correlation with the attribute to be predicted [14]. The
most straightforward method to formulate the sample of a protein
with L residues is to use its entire amino acid sequence, as can be
formulated by

P ¼ R1R2R3R4R5R6R7 . . . RL; ð2Þ

where R1 represents the 1st residue of the protein P, R2 represents
the 2nd residue of the protein P, and so forth. To identify its attri-
bute, the tools for computing amino acid sequence similarity, such
as BLAST [15,16], were used to search the database for those targets
that have high sequence similarity to the query protein. Subse-
quently, the attribute annotations of the target proteins found in
this way were used to infer the attribute of the query protein.
Although this kind of straightforward sequential model contains
the entire sequence information, unfortunately it failed to work
when the query protein did not have any significant sequence sim-
ilarity to the attribute known proteins [12,17]. To overcome the
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above difficulty, which is inherent to the sequential model, various
nonsequential or discrete models to formulate protein samples
have been proposed.

Among the discrete models, the simplest one for a protein was
based on its amino acid composition (AAC) as defined by

P ¼ ½ f ð1Þ1 f ð1Þ2 . . . f ð1Þ20 �
T
; ð3Þ

where f ð1Þu ðu ¼ 1; 2; . . . ;20Þ are the normalized occurrence frequen-
cies of the 20 native amino acids [18–20] in the protein P and T is
the transposing operator. The AAC discrete model was widely used
for identifying various attributes of proteins. However, as can be
seen from Eq. (3), all of the sequence order effects were lost by
using the AAC discrete model. To completely avoid losing the se-
quence order information, the pseudo amino acid composition
(PseAAC) was proposed [21,22] to replace the simple AAC model
for representing the sample of a protein. Ever since the concept of
PseAAC was proposed in 2001 [21], it has penetrated into nearly
all of the areas of protein attribute prediction such as identifying
bacterial virulent proteins [23], predicting supersecondary struc-
ture [24], predicting protein subcellular location [25–27], predicting
membrane protein types [28], discriminating outer membrane pro-
teins [29], identifying antibacterial peptides [30], identifying aller-
genic proteins [31], predicting metalloproteinase family [32],
predicting protein structural class [33], identifying G-protein-cou-
pled receptors (GPCRs) and their types [34], identifying protein qua-
ternary structural attributes [35], predicting protein
submitochondria locations [36], identifying risk type of human pap-
illomaviruses [37], identifying cyclin proteins [38], predicting
GABAA receptor proteins [39], predicting subchloroplast locations
[40], and classifying amino acids [41], among many others (see a
long list of articles cited in the References section of Ref. [12]). Re-
cently, the concept of PseAAC was further extended to represent the
feature vectors of DNA and nucleotides [42,43] as well as other bio-
logical samples (see, e.g., Refs. [44–46]). Because it has been widely
and increasingly used, recently two powerful software programs,
called PseAAC-Builder [47] and propy [48], were established for gen-
erating various special Chou’s pseudo amino acid compositions in
addition to the web server PseAAC [49] built in 2008.

According to a recent review [12], the general form of PseAAC
for a protein P is formulated by

P ¼ ½W1 W2 . . . Wu . . . WX �T; ð4Þ

where the subscript X is an integer and its value, as well as the com-
ponents Wu ðu ¼ 1; 2; . . . ;XÞ, will depend on how to extract the de-
sired information from the amino acid sequence of P (cf. Eq. (2)).
Here we describe how to extract useful information from the
benchmark dataset S to define the components in Eq. (4) for the
protein samples concerned in this study.

One of the most simple PseAAC modes is the so-called n-peptide
composition: when n = 1, it is reduced to AAC; when n = 2, it is
reduced to dipeptide composition [28,30,50–52]; when n = 3, it is
reduced to tripeptide composition [53]; and so forth. Although
the n-peptide composition can incorporate some sort of sequence
order information when n P 2, the dimension of PseAAC formed
in this way will increase rapidly. For instance, the PseAAC formed
by the dipeptide composition would be a 202 = 400-D vector
[30,52,54], that formed by the tripeptide composition would be a
203 = 8000-D vector [53], and that formed by the n-peptide compo-
sition would be a 20n-D vector [54,55]. Accordingly, we might face
the high-dimension disaster problem [56] or machine breakdown
problem [57]. To alleviate the problem of geometric increase in
dimension, we consider the following approach.

Based on the physiochemical properties, the 20 native amino
acids can be clustered into a smaller number of representative res-
idues called reduced amino acid alphabet (RAAA) [58–60]. Com-
pared with the traditional amino acid composition, RAAA not
only simplifies the complexity of protein system but also improves
the ability to find structurally conserved regions and structural
similarity of entire proteins.

One common way to design RAAA is by clustering amino acids
into groups according to sequence or structure information. Re-
cently, a structural alphabet called Protein Blocks (PBs) was pro-
posed by de Brevern and coworkers [61,62] and has been widely
used in computational proteomics, as indicated in a review [63].
PBs contain a set of 16 local structures or prototypes, labeled from
a to p, of five residues length described based on the ðU; WÞ dihe-
dral angles [63]. The labels m and d of PBs are prototypes for the
central region of a-helix and b-strand, respectively; labels a
through c primarily represent the N-cap of b-strand; labels g
through j are specific to coils; labels k and l correspond to N-cap
of a-helix; labels e and f, as well as labels n through p, correspond
to the C-caps [64].

To aid the design of mutations, PBs have been used to define
RAAA by Etchebest and coworkers [65]. Recently, it was demon-
strated that the RAAA defined by these authors is quite useful for
protein family classification [66–68]. According to different opti-
mization procedures as elaborated by Etchebest and coworkers
[65], the 20 native amino acids may have five different cluster pro-
files—CPð13Þ; CPð11Þ;CPð9Þ; CPð8Þ; and CPð5Þ—as formulated
below:

CPð13Þ ¼ fG; IV; FYW; A; L; M; E; QRK; P; ND; HS; T; Cg
CPð11Þ ¼ fG; IV; FYW; A; LM; EQRK; P; ND; HS; T; Cg
CPð9Þ ¼ fG; IV; FYW; ALM; EQRK; P; ND; HS; TCg
CPð8Þ ¼ fG; IV; FYW; ALM; EQRK; P; ND; HSTCg
CPð5Þ ¼ fG; IV FYW; ALMEQRK; P; NDHSTCg

;

8>>>>>><
>>>>>>:

ð5Þ

where the single letters without a semicolon (;) to separate them
mean belonging to a same cluster.

Thus, for the n-peptide composition with various cluster pro-
files, the corresponding components and dimensions will be differ-
ent. For example, for the single amino acid composition, the uth
component in Eq. (4) will be formulated as

Wu ¼ f ð1Þu ; u ¼ 1; 2; . . . ;X; ð6Þ

where f ð1Þu is the occurrence frequency of the uth amino acid in pro-
tein P (cf. Eq. (2)) and the corresponding dimension of PseAAC is gi-
ven by

X ¼

131 ¼ 13 for CPð13Þ cluster

111 ¼ 11 for CPð11Þ cluster

91 ¼ 9 for CPð9Þ cluster

81 ¼ 8 for CPð8Þ cluster

51 ¼ 5 for CPð5Þ cluster

:

8>>>>>>><
>>>>>>>:

ð7Þ

For the dipeptide composition, the uth component in Eq. (4) will be
formulated as

Wu ¼ f ð2Þu ;u ¼ 1; 2; . . . ;X; ð8Þ

where f ð2Þu is the occurrence frequency of the uth dipeptide in pro-
tein P (cf. Eq. (2)) and the corresponding dimension of PseAAC is gi-
ven by

X ¼

132 ¼ 169 for CPð13Þ cluster

112 ¼ 121 for CPð11Þ cluster

92 ¼ 81 for CPð9Þ cluster

82 ¼ 64 for CPð8Þ cluster

52 ¼ 25 for CPð5Þ cluster

:

8>>>>>>><
>>>>>>>:

ð9Þ
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For the tripeptide composition, the uth component in Eq. (4) will be
formulated as

Wu ¼ f ð3Þu ; u ¼ 1; 2; . . . ;X; ð10Þ

where f ð3Þu is the occurrence frequency of the uth tripeptide in pro-
tein P (cf. Eq. (2)) and the corresponding dimension of PseAAC is gi-
ven by

X ¼

133 ¼ 2197 for CPð13Þ cluster

113 ¼ 1331 for CPð11Þ cluster

93 ¼ 729 for CPð9Þ cluster

83 ¼ 512 for CPð8Þ cluster

53 ¼ 125 for CPð5Þ cluster

;

8>>>>>>><
>>>>>>>:

ð11Þ

and so forth.
Once the feature vectors for protein samples are defined via

PseAAC of Eq. (4), the next thing we need to consider is an effective
algorithm or engine to operate the classification.

Support vector machine

Support vector machine (SVM) is a powerful and popular meth-
od for pattern recognition that has been widely used in the realm
of bioinformatics (see, e.g., Refs. [42,50,69–73]). The basic idea of
SVM is to transform the data into a high-dimensional feature space
and then determine the optimal separating hyperplane using a ker-
nel function. To handle a multi-class problem, one versus one
(OVO) and one versus rest (OVR) are generally applied to extend
the traditional SVM. For a brief formulation of SVM and how it
works, see Refs. [69,70]. For more details about SVM, see Ref. [74].

In the current study, the LIBSVM 2.84 package [75] was used as
an implementation of SVM, which can be downloaded from http://
www.csie.ntu.edu.tw/~cjlin/libsvm. The OVO strategy was em-
ployed for making predictions using the popular radial basis func-
tion (RBF). The regularization parameter C and the kernel width
parameter c were determined via an optimization procedure using
a grid search approach, and their actual values obtained in this way
for the current study were C = 2.0 and c = 0.125.

The predictor obtained via the aforementioned procedure is
called iHSP-PseRAAAC, where ‘‘i’’ stands for ‘‘identify,’’ ‘‘HSP’’ stands
for ‘‘heat shock protein,’’ ‘‘Pse’’ stands for ‘‘pseudo,’’ ‘‘R’’ stands for
‘‘reduced,’’ ‘‘AAA’’ stands for ‘‘amino acid alphabet,’’ and ‘‘C’’ stands
for ‘‘composition.’’

Results and discussion

Criteria for performance evaluation

One of the important procedures in developing a useful statisti-
cal predictor [12] is to objectively evaluate its performance or
anticipated success rate. Now we address this problem.

To provide a more intuitive and easier to understand method to
measure the prediction quality, here the criterion proposed in Ref.
[76] was adopted. According to that criterion, the rates of correct
predictions for the HSP samples in the subset Si ði ¼ 1; 2; . . . ;6Þ
and those not belonging to the subset Si are respectively defined
by

KþðiÞ ¼ NþðiÞ � Nþ�ðiÞ
NþðiÞ

K�ðiÞ ¼ N�ðiÞ � N�þðiÞ
N�ðiÞ

;

8>>><
>>>:

ð12Þ

where NþðiÞ is the total number of the investigated HSP samples in
the subset Si, whereas Nþ�ðiÞ is the number of HSP samples in Si that
were incorrectly predicted belonging to the other subsets, and N�ðiÞ
is the total number of the HSP samples in all of the other subsets,
whereas N�þðiÞ is the number of the HSP samples that were incor-
rectly predicted belonging to Si. The overall sub-success prediction
rate for each of the subsets is given by [77]

KðiÞ ¼KþðiÞNþðiÞ þK�ðiÞN�ðiÞ
NþðiÞ þN�ðiÞ

¼ 1�
Nþ�ðiÞ þN�þðiÞ
NþðiÞ þN�ðiÞ

; ði¼ 1; 2; . . . ;6Þ:

ð13Þ

It is obvious from Eqs. (12) and (13) that, if and only if all of the
samples in the subset Si (cf. Eq. (1)) are perfectly correctly predicted
without any underprediction or overprediction (i.e.,
Nþ�ðiÞ ¼ N�þðiÞ ¼ 0 and KþðiÞ ¼ K�ðiÞ ¼ 1), we have KðiÞ ¼ 1; other-
wise, KðiÞ would be smaller than 1.

On the other hand, it is instructive to point out that the follow-
ing metrics are often used in the literature for examining the per-
formance quality of a predictor:

SnðiÞ¼ TPðiÞ
TPðiÞþFNðiÞ

SpðiÞ¼ TNðiÞ
TNðiÞþFPðiÞ

MCCðiÞ¼ TPðiÞ�TNðiÞ�FPðiÞ�FNðiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½TPðiÞþFPðiÞ�½TPðiÞþFNðiÞ�½TNðiÞþFPðiÞ�½TNðiÞþFNðiÞ�

p

OA¼1
N

XM

i¼1

TPðiÞ

;

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð14Þ

where TP represents the true positive, TN represents the true nega-
tive, FP represents the false positive, FN represents the false nega-
tive, Sn represents the sensitivity, Sp represents the specificity,
MCC represents the Mathew’s correlation coefficient, OA represents
the overall accuracy, M = 6 is the number of subsets (cf. Eq. (1)), and
N is the number of the total samples in S.

The relations between the symbols in Eqs. (13) and (14) are gi-
ven by

TPðiÞ ¼ NþðiÞ � Nþ�ðiÞ
TNðiÞ ¼ N�ðiÞ � N�þðiÞ
FPðiÞ ¼ N�þðiÞ
FNðiÞ ¼ Nþ�ðiÞ

:

8>>><
>>>:

ð15Þ

Substituting Eq. (15) into Eq. (14) and also noting Eq. (13), we
obtain

SnðiÞ ¼ 1� Nþ�ðiÞ
NþðiÞ

SpðiÞ ¼ 1� N�þðiÞ
N�ðiÞ

MCCðiÞ ¼
1� ðN

þ
�ðiÞ

NþðiÞ þ
N�þðiÞ
N�ðiÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ N�þðiÞ�Nþ�ðiÞ
NþðiÞ Þð1þ

Nþ�ðiÞ�N�þðiÞ
N�ðiÞ Þ

q

OA ¼ 1
N

XM

i¼1

½NþðiÞ � Nþ�ðiÞ�

:

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð16Þ

Obviously, when Nþ�ðiÞ ¼ 0, meaning that none of the HSP samples
in subset Si was mispredicted belonging to other subsets, we have
the sensitivity SnðiÞ ¼ 1, whereas when Nþ�ðiÞ ¼ NþðiÞ, meaning that
all of the HSP samples in subset Si were mispredicted belonging to
the other subsets, we have the sensitivity SnðiÞ ¼ 0. Likewise, when
N�þðiÞ ¼ 0, meaning that none of the HSP samples in the other sub-
sets was incorrectly predicted belonging to the subset Si, we have
the specificity SpðiÞ ¼ 1, whereas when N�þðiÞ ¼ N�ðiÞ, meaning that
all of the HSP samples in the other subsets were incorrectly

http://www.csie.ntu.edu.tw/~cjlin/libsvm
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predicted belonging to the subset Si, we have the specificity
SpðiÞ ¼ 0. When Nþ�ðiÞ ¼ N�þðiÞ ¼ 0 ði ¼ 1; 2; . . . ;6Þ, meaning that
none of the HSP samples in all of the subsets of S (cf. Eq. (1)) was
incorrectly predicted, we have the overall accuracy OA ¼ 1, whereas
when Nþ�ðiÞ ¼ NþðiÞ and N�þðiÞ ¼ N�ðiÞ ði ¼ 1; 2; . . . ;6Þ, meaning that
the HSP samples in all of the subsets of S were mispredicted, we
have the overall accuracy OA ¼ 0. When Nþ�ðiÞ ¼ N�þðiÞ ¼ 0, meaning
that none of the HSP samples in the subset Si was mispredicted, we
have MCCðiÞ ¼ 1; when Nþ�ðiÞ ¼ NþðiÞ=2 and N�þðiÞ ¼ N�ðiÞ=2, we
have MCCðiÞ ¼ 0, meaning no better than random prediction for
the HSP samples in the subset Si; when Nþ�ðiÞ ¼ NþðiÞ and
N�þðiÞ ¼ N�ðiÞ, we have MCCðiÞ ¼ �1, meaning total disagreement
between prediction and observation for the HSP samples in the sub-
set Si. As we can see from the above discussion, it is much more
intuitive and easier to understand when using Eq. (16) to examine
a predictor for its sensitivity, specificity, overall accuracy, and
Mathew’s correlation coefficient.
Cross-validation

Three cross-validation methods, namely sub-sampling (or K-
fold cross-validation) test, independent dataset test, and jackknife
test, are often used to evaluate the quality of a predictor [78].
Among the three methods, however, the jackknife test is deemed
the least arbitrary and most objective, as elucidated in Ref. [79]
and demonstrated by Eqs. (28) to (32) of Ref. [12], and hence has
been widely recognized and increasingly adopted by investigators
to examine the quality of various predictors (see, e.g., Refs. [25,27–
29,34,37–39,42,80,81]). Accordingly, the jackknife test was used to
examine the performance of the model proposed in the current
study. In the jackknife test, each sequence in the training dataset
is in turn singled out as an independent test sample, and all of
the rule parameters are calculated without including the one being
identified.

Listed in Table 2 are the jackknifing results obtained by iHSP-
PseRAAAC on the benchmark dataset S (cf. Supporting Information
S1 in supplementary material) based on the five different cluster
profiles (Eq. 5) for the dipeptide case (i.e., n = 2 with Eqs. (8) and
(9)). For facilitating comparison, the results calculated for the
single amino acid case (i.e., n = 1 with Eqs. (6) and (7)) and the
Table 2
Results obtained by iHSP-PseRAAAC in identifying heat shock protein families with dipept
approaches.

HSP family Subset Metrics (Eq. (16)) Cluster p
CPð13Þ
Dimensio

169

HSP20 S1 Sn(1) 84.87%
Sp(1) 96.82%
MCC(1) 0.82

HSP40 S2 Sn(2) 94.84%
Sp(2) 84.82%
MCC(2) 0.97

HSP60 S3 Sn(3) 69.94%
Sp(3) 98.28%
MCC(3) 0.69

HSP70 S4 Sn(4) 79.86%
Sp(4) 86.77%
MCC(4) 0.55

HSP90 S5 Sn(5) 55.17%
Sp(5) 99.58%
MCC(5) 0.27

HSP100 S6 Sn(6) 67.06%
Sp(6) 99.37%
MCC(6) 0.76

Overall OA 87.42%
tripeptide case (i.e., n = 3 with Eqs. (10) and (11)) are given in
Supporting Information S2 of the supplementary material, from
which we can see that the corresponding success rates are obvi-
ously lower than those for the case of n = 2 (Table 2). Although in
principle we could enlarge the feature vector dimension X (cf.
Eq. (4)) by further increasing n, it would cause the following two
problems. One is that the computational time would be signifi-
cantly longer, and the other is that the results might be even worse
due to the so-called ‘‘overfitting’’ [82] or ‘‘high-dimension disaster’’
[56] problem in statistical prediction. Accordingly, for the current
benchmark dataset, the optimal value for n was 2. Furthermore,
as we can see from Table 2, when the predictions were based on
CPð11Þ with X ¼ 121, the best overall success rate was achieved.
In other words, when the general form of PseAAC (Eq. (4)) for the
HSP samples was formulated by

P ¼ f ð2Þ1 f ð2Þ2 . . . f ð2Þu . . . f ð2Þ121

h iT
; ð17Þ

where f ð2Þu ðu ¼ 1; 2; . . . ;121Þ has the same meaning as that of
Eq. (8), the best prediction quality was obtained by iHSP-PseRAAAC
in identifying the HSP functional types.

In addition, to our best knowledge, so far there is no existing
predictor whatsoever that could be used to identify the functional
types of HSPs according to their sequence information alone, and
hence no comparison could be made in this study for iHSP-PseR-
AAAC with its counterparts. However, it would be instructive to
make a comparison of the overall success rate achieved by iHSP-
PseRAAAC with those achieved by completely random guess
(CRG) and weighted random guess (WRG) [83]. Obviously, the
overall success rate OA (cf. Eq. (16)) in identifying the HSPs among
their six functional types by CRG is given by

OAðCRGÞ ¼ 1
6
� 16:67%; ð18Þ

whereas that by WRG is given by [84]

OAðWRGÞ ¼ ðN1Þ2 þ ðN2Þ2 þ ðN3Þ2 þ ðN4Þ2 þ ðN5Þ2 þ ðN6Þ2

ðNÞ2
; ð19Þ

where N is the number of HSPs in the benchmark dataset S, N1 is
the number of HSPs in the subset S1, N2 is the number of HSPs in
ide or n-peptide (n = 2) composition based on different reduced amino acid alphabet

rofile (Eq. (5))
CPð11Þ CPð9Þ CPð8Þ CPð5Þ

n X when n = 2 (Eqs. (8) and (9))

121 81 64 25

87.68% 82.63% 81.51% 63.02%
96.36% 97.01% 95.88% 95.65%

0.82 0.81 0.77 0.64
95.31% 95.39% 95.46% 90.38%
84.87% 81.49% 78.90% 55.22%

0.99 0.96 0.93 0.63
66.87% 64.42% 60.12% 36.19%
98.93% 98.24% 99.12% 98.07%

0.69 0.64 0.66 0.39
79.15% 74.91% 72.44% 54.06%
86.54% 86.45% 87.36% 86.64%

0.54 0.52 0.51 0.39
51.72% 43.10% 48.28% 20.69%
99.89% 99.89% 99.79% 99.45%

0.30 0.28 0.28 0.16
69.41% 69.41% 64.70% 31.76%
99.84% 99.62% 99.73% 98.83%

0.83 0.77 0.79 0.40

87.82% 86.11% 85.30% 73.35%



Fig.2. A semi-screenshot to show the top page of the iHSP-PseRAAAC web server. Its website address is at http://lin.uestc.edu.cn/server/iHSP-PseRAAAC.
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the subset S2, and so forth (see Eq. (1) and Table 1). Substituting
these data in Table 1 and Eq. (19), we obtain

OAðWRGÞ ¼ ð357Þ2 þ ð1279Þ2 þ ð163Þ2 þ ð283Þ2 þ ð58Þ2 þ ð85Þ2

ð2225Þ2

’ 37:99%:

ð20Þ

In contrast, the overall success rate achieved by iHSP-RAAAC was
87.82 (cf. Table 2). Comparing it with the results in Eqs. (18) and
(20) indicates that the overall success rate by the current predictor
is more than 70% higher than that by the CRG and approximately
50% higher than that by the WRG, indicating that iHSP-PseRAAAC
may at least become an easy and useful tool for timely identifying
the functional types of HSPs. More important, we hope that this
study can play the role of ‘‘cast a brick to attract jade,’’ as is often
quoted in a Chinese proverb, to stimulate more in-depth studies
in this area.

Web server guide

For the convenience of the vast majority of experimental scien-
tists, below we give a step-by-step guide on how to use the iHSP-
PseRAAAC web server to get their desired results.

Step 1
Open the web server at http://lin.uestc.edu.cn/server/iHSP-

PseRAAAC, and you will see the top page of iHSP-PseRAAAC on
your computer screen, as shown in Fig. 2. Click on the Read Me but-
ton to see a brief introduction about the predictor and the caveat
when using it.

Step 2
Either type or copy/paste the query heat shock protein se-

quence into the input box at the center of Fig. 2. The input se-
quence should be in the FASTA format. A sequence in FASTA
format consists of a single initial line beginning with a ‘‘greater
than’’ symbol (>) in the first column, followed by lines of sequence
data. The words right after the ‘‘>’’ symbol in the single initial line
are optional and only used for the purpose of identification and
description. All lines should be no longer than 120 characters
and usually do not exceed 80 characters. The sequence ends if an-
other line starting with a ‘‘>’’ symbol appears; this indicates the
start of another sequence. Example sequences in FASTA format
can be seen by clicking on the Example button right above the in-
put box.

Step 3
Click on the Submit button to see the predicted result. For

example, if you use the six query HSP sequences in the Example
window as the input, after clicking the Submit button you will
see the following shown on the screen of your computer: the out-
come for the 1st query sample is ‘‘HSP100’’; the outcome for the
2nd query sample is ‘‘HSP90’’; the outcome for the 3rd query sam-
ple is ‘‘HSP70’’; the outcome for the 4th query sample is ‘‘HSP60’’;
the outcome for the 5th query sample is ‘‘HSP40’’; the outcome for
the 6th query sample is ‘‘HSP20’’. All of these results are fully con-
sistent with the experimental observations as summarized in Sup-
porting Information S1 of the supplementary material. It takes a
few seconds for the above computation before the predicted result
appears on your computer screen; the greater number of query se-
quences and the longer each sequence, the more time that is usu-
ally needed.

Step 4
Click on the Citation button to find the relevant articles that

document the detailed development and algorithm of iHSP-
PseRAAAC.

Step 5
Click on the Data button to download the benchmark datasets

used to train and test the iHSP-PseRAAAC predictor.
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