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ABSTRACT

Occurring at adenine (A) with the consensus motif GAC, N®-methyladenosine (m®A) is one of the most
abundant modifications in RNA, which plays very important roles in many biological processes. The
nonuniform distribution of m®A sites across the genome implies that, for better understanding the
regulatory mechanism of m®A, it is indispensable to characterize its sites in a genome-wide scope.
Although a series of experimental technologies have been developed in this regard, they are both time-
consuming and expensive. With the avalanche of RNA sequences generated in the postgenomic age, it is
highly desired to develop computational methods to timely identify their m®A sites. In view of this, a
predictor called “iRNA-Methyl” is proposed by formulating RNA sequences with the “pseudo dinucleotide
composition” into which three RNA physiochemical properties were incorporated. Rigorous cross-
validation tests have indicated that iRNA-Methyl holds very high potential to become a useful tool for
genome analysis. For the convenience of most experimental scientists, a web-server for iRNA-Methyl has
been established at http://lin.uestc.edu.cn/server/iRNA-Methyl by which users can easily get their
desired results without needing to go through the mathematical details.

© 2015 Elsevier Inc. All rights reserved.

More than 100 kinds of post-transcriptional RNA modifications
have been found in eukaryotic messenger RNA (mRNA) [1]. Among
these modifications, N®-methyladenosine (m®A) is the most abun-
dant one that is also the first RNA reversible one [2]. As shown in
Fig.1, the modification occurs on the sixth nitrogen atom of adenine.

Abbreviations: mRNA, messenger RNA; m°A, Nﬁ—methyladenosine; NAC, nucleic
acid composition; PseDNC, pseudo dinucleotide composition; SVM, support vector
machine; RBF, radial basis kernel function; PseAAC, pseudo amino acid composi-
tion; PseKNC, pseudo k-tupler nucleotide composition.
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Because it was found during the 1970s, m®A has been identified in
all three kingdoms of life [3—6] and is associated with a number of
biological processes, including mRNA splicing, export, stability, and
immune tolerance [7—9].

With the development of high-throughput techniques such as
MeRIP-Seq [10] and mPA-seq [11], the genome-wide distribution of
mPA is now available for several species such as Saccharomyces
cerevisiae [12], Mus musculus [13], and Homo sapiens [13]. These
experimental results revealed that m®A sites tend to occur near the
stop codon, in 3’ UTR, and within long internal exons [10,13]. The
nonrandom distribution of m®A sites across the genome is highly
conserved from yeast to human, suggesting that m®A modification
is both fundamental and important for organisms [12,13]. The
current biochemical methods are, however, both costly and time-
consuming in performing genome-wide analysis. Therefore, it is
in high demand to develop computational methods for analyzing
the distribution and function of m®A so as to help speed up the
genome-wide mPA detection.
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Fig.1. Illustration showing the N-methylation and demethylation of adenosine. The
formation of mPA is catalyzed by N6-adenosyl methyltransferases (MTases), whereas its
reversible modification (demethylation) is catalyzed by demethyltransferases
(DMTases).

Unfortunately, to our best knowledge, so far there is no
computational tool available whatsoever for detecting m®A. In view
of this, the current study was initiated in an attempt to develop a
new computational predictor by which one can easily identify m®A
sites.

As demonstrated by a series of recent publications [14—22], to
establish a really useful sequence-based statistical predictor for a
biological system and also to make the presentation logically
crystal clear, we should follow the five-step guidelines [23]: (i)
construct or select a valid benchmark dataset to train and test the
predictor; (ii) formulate the biological sequence samples with an
effective mathematical expression that can truly reflect their
intrinsic correlation with the target to be predicted; (iii) intro-
duce or develop a powerful algorithm (or engine) to operate the
prediction; (iv) properly perform cross-validation tests to objec-
tively evaluate the anticipated accuracy; and (v) establish a user-
friendly web-server for the predictor that is accessible to the
public. Below, we elaborate how to deal with these steps one by
one.

Materials and methods
Benchmark dataset

Because the sites of m®A in the S. cerevisize genome share a
consensus motif GAC where its center base has the potential to be
methylated [12], for facilitating description later, we use the
following scheme to represent an RNA sample:

R:(GAC) = N_gN_z_1)*++ N.o2N_1GACN 1N 3+ Ny 1)Nye,
(1)

where the center A represents “adenine,” the subscript £ is an
integer, N_; represents the £-th upstream nucleotide from the
center, N, represents the £-th downstream nucleotide, and so forth
(Fig.2). The (2% + 3)-tuple RNA sample R;(GAC) can be further
classified into the following categories:

1) +E

I
00 0 +1+2+3

Fig.2. Schematic drawing showing how to use the flexible scaled window along an
RNA sequence to collect the potential m®A-containing segments. See Eqs. (1)—(5) and
the relevant text for further explanation.

R{ (GAC),
R; (GAC),

if its center is a methylation site

R(GAC)= { otherwise

(2)

where R (GAC) denotes a true methylation segment with adenine
at its center, R; (GAC) denotes a false methylation segment with
adenine at its center, and the symbol € means “a member of” in the
set theory.

As elaborated in a comprehensive review [24], there is no need
to separate a benchmark dataset into a training dataset and a
testing dataset if the predictor to be developed will be tested by the
jackknife test or subsampling (K-fold) cross-validation test because
the outcome obtained in this way is actually from a combination of
many different independent dataset tests. Thus, the benchmark
dataset S; for the current study can be formulated as

s: = sf sk, (3)

where the positive subset Sg contains only the samples of true
methylation segments Rg(GAC) and the negative subset S; con-
tains only the samples of false methylation segments R; (GAC)
(see Eq.(2)), whereas | represents the symbol for “union” in the set
theory.

Because the length of RNA sample R;(GAC) is 2¢ + 3 (see Eq.
(1)), the benchmark dataset with different £ value will contain RNA
segments with different number of nucleotides, as illustrated
below:

21nucleotides, if£=9
31nucleotides, ift=14
41nucleotides, if¢=19
51 nucleotides, ifE=24 "
61 nucleotides, if£=29

The length of RNA samplesin S; =

(4)

Preliminary tests had indicated, however, that best prediction
results were achieved when £ = 24. Accordingly, hereafter we focus
on the RNA samples with 51 nucleotides only.

The detailed procedures to construct S;_,4 are as follows. First,
asdone in Ref. [25], slide the (2 + 3) = 51-tuple nucleotide window
along each of the RNA sequences taken from S. cerevisiae genome,
and collected were only those RNA segments that have GAC at the
center and A (adenine) or G (guanine) at the position of N_; (see Eq.
(1)); this is done because the consensus motif for m®A determined
by experiments for S. cerevisiae genome is RGAC (R = A/G) [12].
Second, if the upstream or downstream in an RNA was less than
£ = 24 or greater than L — 24 (L is the RNA's length), the lacking
nucleotide was filled with its mirror image (Fig.3). Third, the RNA
segment samples obtained in this way were put into the positive

(A) Mirror image for 5’ terminus

N_yN_p -+ N_p;N_p3 & N_23N_5; - N_;N_4

(B) Mirror image for 3’ terminus

NL—23NL—22 NL—1NL < NLNL—1 NL—ZZNL—23

Fig.3. Schematic illustration showing the mirror image of the 5 RNA terminal
segment (A) and the 3’ RNA terminal segment (B). The symbol < represents a mirror.
The real RNA segment is colored in blue, whereas its mirror image is colored in red.
(For interpretation of the references to color in this figure legend, the reader is referred
to the Web version of this article.)
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subset Sg if their centers have been experimentally annotated as
the methylation sites; otherwise, they were put into the negative
subset S; . Fourth, using the CD-HIT software [26], the aforemen-
tioned samples were further subject to a screening procedure to
winnow those that were identical to any other in a same subset.
Fifth, excluded from the benchmark dataset were also those that
were self-conflicted (i.e., simultaneously occurring in both
methylation subset S} and nonmethylation subset S;).

By following the aforementioned five steps, we first obtained a
benchmark dataset consisting of 1307 positive samples and 33,280
negative samples. It is a very imbalanced dataset in which the size
of S; is overwhelmingly greater than that of SE*. To minimize the
underprediction or overprediction [27] caused by such a highly
skewed benchmark dataset, we randomly picked out 1307 ones
from the 33,280 negative samples to form the negative dataset S; .

The detailed sequences for the 1307 positive samples and 1307
negative samples are given in the online Supplementary material.
They can also be downloaded at http://lin.uestc.edu.cn/server/
iRNAMethyl/data.

Representation of RNA samples

The RNA samples in the current benchmark dataset can be
generally expressed as

R = N{N,N3---N;---Nsq, (5)

where Nj represents the first nucleotide at the sample sequence
position 1, N, represents the second nucleotide at the position 2,
and so forth. They can be any of the four nucleotides, that is,

N;e{A(adenine) C(cytosine) G (guanine) U (uracil) }.  (6)

Based on the sequential model of Eq. (5), one could directly use
BLAST [28] to perform statistical analysis. Unfortunately, this kind
of straightforward and intuitive approach failed to work when a
query RNA sequence sample did not have significant similarity to
any of the character-known RNA sequences.

To deal with this problem, investigators could not help but
resort to the discrete or vector model. Actually, an important reason
for them to do so is that all of the existing machine-learning al-
gorithms can be directly used to handle vector models but not se-
quences, as elaborated in Ref. [29].

The most simple vector model for an RNA sequence is its nucleic
acid composition (NAC), that is,

R = [f(A) f(O) £(G) fU)]". (7)

where f(A), f(C), fiG), and f(U) are the normalized occurrence fre-
quencies of adenine (A), cytosine (C), guanine (G), and uracil (U) in
the RNA sequence, respectively; the symbol T is the transpose
operator. As we can see from Eq. (7), however, if using NAC to
represent a RNA sample, all of its sequence order information
would be completely lost.

If using the k-tuple nucleotide (k-mer) composition to represent
the RNA sequence, the corresponding vector will have a dimension
of 4%, With the incensement of k values, the vector's dimension will
increase rapidly, leading to the so-called “high-dimension disaster”
[30] or overfitting problem that will significantly reduce the devi-
ation tolerance or cluster-tolerant capacity [31] so as to lower the
prediction success rate or stability. Therefore, the k-mer approach is
useful only when the value of k is very small. In other words, it can
be used only to incorporate the local or short-range sequence order
or pattern information, but certainly not the global or long-range
sequence order or pattern information.

To approximately cover the long-range sequence pattern infor-
mation, one popular and well-known method is to use the pseudo
component approach originally proposed for dealing with protein/
peptide sequences [32]. Ever since being introduced in 2001, the
approach and its concept have been penetrating to nearly all of the
areas of computational proteomics (see, e.g., Refs. [33—40] as well
as a long list of articles cited in a recent review article [41]. Because
the pseudo component approach has been widely and increasingly
used, some publicly accessible web-servers [42—44] have been
established, allowing users to generate various kinds of pseudo
components according to their needs to study many different
problems in computational proteomics. Recently, the concept of
pseudo component approach was further extended to study the
problems in computational genetics and genomics [18,21,45,46].
Meanwhile, the corresponding web-servers have been developed
accordingly for generating various kinds of pseudo components for
DNA sequences [47—49] and RNA sequences [50,51].

To incorporate both the local and global sequence pattern in-
formation of the RNA sequences, we adopted the approach of
pseudo 2-tuple nucleotide composition or pseudo dinucleotide
composition (PseDNC), that is, representing the RNA sample of Eq.
(5) with the formulation below:

R= [ddy - digdigyr - digial” (8)
where,
5 Ju - (1<u<16)
i fit w0
dy = wo 9)
e (16<u <16 +12)
i fit w0

In Eq. (9), fu (u = 1,2,---,16) is the normalized occurrence frequency
of the u-th non-overlapping dinucleotides in the RNA sequence,
and

L
1 .
0; = =1 E GijU=12 -, %52r<l), (10)

i

j—1
=1
where 07 is called the first-tier correlation factor that reflects the
sequence order correlation between all of the most contiguous
dinucleotide along a RNA sequence (Fig.4A), 0, is the second-tier
correlation factor between all of the second-most contiguous
dinucleotide (Fig.4B), 03 is the third-tier correlation factor between
all of the third-most contiguous dinucleotide (Fig.4C), and so forth.

Now, it is clear that the first 16 components in Eq. (8) are used to
incorporate the short-range or local sequence order information of
the RNA sample, whereas the remaining components are used for
its long-range or global sequence order information. Obviously, A
can also be viewed as the number of the total pseudo components
used to reflect the long-range or global sequence effect [50,51] and
w of Eq. (9) is the weight factor [32,35]. The concrete values for A
and w are further discussed later.

In Eq. (10), the coupling factor C;;.; is given by

Cuisg =, 3 [Pu(D) — Pe(Diy) ()
g:

where u is the number of RNA physicochemical properties
considered that is equal to 3 in the current study and is further
explained below.
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Fig.4. Schematic illustration showing the correlations of dinucleotides along an RNA sequence. (A) The first-tier correlation reflects the sequence order mode between all of the
most contiguous non-overlapping dinucleotide. (B) The second-tier correlation reflects the sequence order mode between all of the second-most contiguous non-overlapping
dinucleotide. (C) The third-tier correlation reflects the sequence order mode between all of the third-most contiguous non-overlapping dinucleotide.

Table 1
Original values of the three physicochemical properties for the 16 different di-
nucleotides in RNA.

Dinucleotide Enthalpy Entropy Free energy
(K4/mol) (eU) (Ka/mol)
GG -12.2 -29.7 -3.26
GA -133 —355 -235
GC -14.2 -349 -3.42
GU -10.2 —26.2 —2.24
AG -7.6 -19.2 —2.08
AA -6.6 -184 -0.93
AC -10.2 -26.2 —2.24
AU -5.7 -15.5 -1.10
CG -8.0 -194 -2.36
CA -10.5 -27.8 -2.11
cC -12.2 -29.7 -3.26
cu -7.6 -19.2 —2.08
UG -76 -19.2 -2.11
UA -8.1 -22.6 -1.33
uc -10.2 —26.2 -2.35
uu -6.6 —184 -0.93

Note. See text for further explanation.

RNA property parameters

Because the formation of RNA secondary structure will decrease
the m®A methylation [52], three physicochemical proper-
ties—enthalpy [53], entropy [53], and free energy [54|—that can
quantify the RNA secondary structures [55—57] are used to calcu-
late the global or long-range sequence order effects via Eqgs. (10)
and (11). The concrete values of these three physicochemical
properties are given in Table 1. Note that before substituting them
into Eq. (11), all of the original values Pg(D;) (i = 1,2,3) were sub-
jected to a standard conversion, as described by the following
equation:

Pg(D;) — (Pg(D;))
SD{{Py(Dy)) (12)

where the symbol () means taking the average of the quantity
therein over the 16 different dinucleotides, and SD means the

Pg(D;) =

corresponding standard deviation. For the detailed mathematical
formulation of SD, see Eq. (4) of the original article [32] or Eq. (4) of
the 2005 article [35]. The advantage to do so is that the converted
values obtained by Eq. (12) will have a zero mean value over the 16
different dinucleotides and will remain unchanged if going through
the same conversion procedure again [24].

Support vector machine

Support vector machine (SVM) is a machine-learning algorithm
based on the statistical learning theory. It has been widely used in
the realm of bioinformatics (see, e.g., [16]; [19]; [45]; [46]). Its basic
principle is to transform the input vector into a high-dimension
Hilbert space and seek a separating hyperplane with the maximal
margin in this space by using the following decision function:

F(Y) _sgn{ ZN:y,-a,--K(Y,Y,-)+b}7 (13)
i-1

where ¢; is the Lagrange multipliers, b is the offset, X is the query
input vector, Yi is the i-th _t)rzining vector, y; represents the type of
the i-th training vector, K(X, X;) is a kernel function that defines an
inner product in a high-dimensional feature space, and sgn is the
sign function. Due to its effectiveness and speed in the nonlinear
classification process, the radial basis kernel function (RBF) was
used in the current study. For a brief formulation of SVM and how it
works, see the article Ref. [58]; for more details about SVM, see the
monograph Ref. [59].

The package LIBSVM 2.84 (http://www.csie.ntu.edu.tw/~cjlin)
written by Chang and Lin was employed to perform SVM in the
current study. The SVM algorithm contains two parameters; one is
the regularization parameter C, and the other is the kernel width
parameter v. In the current study, the two parameters were
determined by an optimization procedure in which the grid search
and 10-fold cross-validation were performed. The final results ob-
tained in this way were C = 32 and y = 0.0078125.

The predictor obtained via the above procedures is called “iRNA-
Methyl.”
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Results and discussion
Metrics used to evaluate the prediction quality

The current study is a kind of binary classification problem, that
is, for a given RNA sample, whether it is a positive one (belonging to
the methylation segment) or a negative one (belonging to the
nonmethylation segment). For this kind of binary classification
problem, the following set of metrics was often used to measure the
prediction quality:

sp—_ 1P
“TP+FN

TN
SP= IN PP iy
Ace TP + TN , (14)

~ TP+ TN+ FP+EN
(TP x TN) — (FP x FN)

MCC =

/(TP 1 FP) (TP 1 FN)(IN 1 FP)(IN 1 FN)

where TP is the true positive, TN is the true negative, FP is the false
positive, FN is the false negative, Sn is the sensitivity, Sp is the
specificity, Acc is the accuracy, and MCC is the Matthews correlation
coefficient [60]. The metrics formulated in Eq. (14) is not easy to
understand for most experimental scientists, and hence here we
prefer to use the following formulation as done by many in-
vestigators in a series of recent publications (see, e.g.,
Refs. [14,17,22,61—65]):

.
Sn:l—% 0<Sn<1
Ny
S <Sp<
Sp=1 N 0<Sp<i
NT+N7T
Acc:A:l—ﬁ 0<Acc<1
1 (NEANG
Nt 4N~
MCC= -1<MCC<1
N, —N* N*—N7;
) (s

(15)

where N is the total number of positive samples or true methyl-
ation RNA segments investigated, N* is the number of true
methylation RNA samples incorrectly predicted to be false
methylation segments, N~ is the total number of negative samples
or nonmethylation RNA samples investigated, and N7 is the num-
ber of nonmethylation RNA samples incorrectly predicted to be
methylation segments. According to Eq. (15), the following is
crystal clear. When N* = 0, meaning that none of the positive
sample was incorrectly predicted to be negative, we have sensi-
tivity Sn = 1. When N = N+, meaning that all of the positive
samples were incorrectly predicted to be negative, we have sensi-
tivity Sn = 0. Likewise, when N = 0, meaning that none of the
negative samples was mispredicted, we have specificity Sp = 1.
When N = N-, meaning that all of the negative samples were
incorrectly predicted as positive, we have specificity Sp = 0. When
N* = N; =0, meaning that none of the samples in the positive
dataset and none of the samples in the negative dataset were
incorrectly predicted, we have overall accuracy Acc = 1 and

MCC = 1. When N* =N* and Ny = N—, meaning that all of the
samples in the positive dataset and all of the samples in the
negative dataset were incorrectly predicted, we have overall ac-
curacy Acc = 0 and MCC = —1. When Nf = N*/2and NI =N—/2,
we have Acc = 0.5 and MCC = 0, meaning no better than random
guessing. As we can see from the above discussion, it would make
the meanings of sensitivity, specificity, overall accuracy, and Mat-
thews correlation coefficient much more intuitive and easier to
understand by using the formulation of Eq. (15), particularly for the
meaning of MCC.

It should be pointed out, however, that the set of metrics as
defined in Eq. (14) or Eq. (15) is valid only for the single-label
systems. For the multi-label systems, whose emergence has
become more frequent in system biology [66—69]| and system
medicine [29,70], a completely different set of metrics as defined in
Ref. [27] is needed.

Method used to conduct cross-validation

With a set of clearly defined metrics available to measure the
prediction quality, the next thing is what validation method should
be used to derive the metrics values. In statistical prediction, the
following three cross-validation methods are often used to derive
the metrics values for a predictor: independent dataset test, sub-
sampling (or K-fold cross-validation) test, and jackknife test [71]. Of
the three methods, however, the jackknife test is deemed the least
arbitrary that can always yield a unique outcome for a given
benchmark dataset, as elucidated in Ref. [23] and demonstrated by
Egs. 28—32 therein. Accordingly, the jackknife test has been widely
recognized and increasingly used by investigators to examine the
quality of various predictors (see, e.g., Refs. [37,39,40,72—79]).

Accordingly, in this study we also used the jackknife test to
evaluate the accuracy of the current predictor. During the jackknife
test, each of the samples in the benchmark dataset is in turn singled
out as an independent test sample and all of the rule parameters
are calculated without including the sample being identified.
Although the jackknife test may take more computational time, it is
worthwhile because it will always yield a unique outcome for a
given benchmark dataset.

Parameter determination and anticipated success rates

As we can see from Egs. (9) and (10), the current model depends
on the two parameters w and A. The former is the weight factor
usually within the range from O to 1, whereas the latter is the
number of correlation tiers considered to reflect the global
sequence pattern effect (Fig.4). Generally speaking, the greater the
A is, the more global sequence pattern information the model
contains. But if A is too large, it would reduce the cluster-tolerant
capacity [31] so as to lower the cross-validation accuracy due to
overfitting or the “high-dimension disaster” problem [30]. There-
fore, our searching for the optimal values of the two parameters
was within the ranges given below:
{ 3<A<6 withstepA=1 (16)

01<w<1 withstepA=0.1"

At this step, for reducing computational time, the iRNA-Methyl
predictor was examined by the 10-fold cross-validation on the
benchmark dataset S (see Eq. (3) as well as the Supplementary
material). The results obtained in this way are illustrated in Fig.5,
from which we can see that, when A = 6 and w = 0.9, the predictor's
accuracy (Acc) reaches its peak, indicating that the optimal A and w
values for the proposed predictor are 6 and 0.9, respectively, when
trained by the current benchmark dataset.
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Fig.5. Three-dimensional graph showing the accuracies obtained in the 10-fold cross-
validation with different values of w and A.

Subsequently, with A fixed at 6 and w fixed at 0.9, the rigorous
jackknife tests were performed to calculate the Sn, Sp, Acc, and MCC
as defined in Eq. (15) for the iRNA-Methyl predictor on the same
benchmark dataset. The results obtained in this way are listed in
Table 2. Before the availability of iRNA-Methyl, to predict the
methylation sites in an RNA sample, one could not help but use the
sequence-similarity-search-based tools (e.g., BLAST [28]) to search
for those character-known sequences with high similarity to the
query sample. According to the BLAST approach, the query sample
will be predicted as the true methylation RNA segment if it is most
similar to the samples in the positive subset; otherwise, it will be
predicted as the false methylation RNA segment. Although it was
quite straightforward and intuitive, unfortunately, the BLAST
approach failed to work when the query sample did not have sig-
nificant similarity to any of the character-known sequences as
elucidated in Ref. [24]. With the availability of iRNA-Methyl, how-
ever, one can easily get the desired results via its web-server. The
success rates obtained by iRNA-Methyl and the BLAST approach via
the rigorous jackknife tests on the same benchmark dataset are
given in Table 2, from which we can see the following. First, for the
rates obtained by the BLAST approach, there is a big gap between Sn
and Sp, indicating that the predicted results by the BLAST approach
are very unstable with quite low specificity; in contrast, the cor-
responding rates obtained by iRNA-Methyl are much more even.
Second, the Acc rate achieved by iRNA-Methyl is approximately 10%
higher than that of the BLAST approach, and the MCC rate of iRNA-
Methyl is two times that of BLAST, indicating that the iRNA-Methyl
predictor is superior to the BLAST approach not only in overall ac-
curacy but also in stability.

Table 2
Comparison of iRNA-Methyl with the other method in identifying methylation sites
in RNA.

Prediction method Sn (%) Sp (%) Acc (%) MCC
iRNA-Methyl® 70.55 60.63 65.59 0.29
BLAST approach” 71.76 38.79 55.27 0.11

Note. Sn, sensitivity; Sp, specificity; Acc, accuracy; MCC, Matthews correlation
coefficient.

2 Proposed in this article.

b Based on the sequence similarity principle [28].

All of this implies that the iRNA-Methyl predictor proposed in
this article is quite promising and may become a useful high-
throughput tool in identifying m°®A sites.

Web-server and guide for users

For the convenience of most experimental scientists, a publicly
accessible web-server for iRNA-Methyl has been established.
Moreover, to maximize users' convenience, a step-by-step guide on
how to use it to get the desired results is given below:

Step 1 Open the web-server at http://lin.uestc.edu.cn/server/iRNA-
Methyl and you will see the top page of the iRNA-Methyl
predictor on your computer screen, as shown in Fig.6.
Click on the Read Me button to see a brief introduction
about the predictor and the caveat when using it.

Step 2 Either type or copy/paste the query RNA sequences into the
input box at the center of Fig.6. The input sequence should
be in FASTA format. For examples of RNA sequences in
FASTA format, click the Example button right above the
input box.

Step 3 Click on the Submit button to see the predicted result. For
example, if you use the query RNA sequences in the
Example window as the input, you will see the following on
the screen of your computer. (1) RNA sequence 1 contains 5
GAC (with adenine at its middle) consensus motifs, of which
only those at the sequence position 128 is predicted to be
the methylation sites or m®A site, whereas all of the others
are not. (2) RNA sequence 2 contains 8 GAC consensus
motifs, of which only those at the sequence position 332 is
predicted to be the methylation sites, whereas all of the
others are not. All of these results are fully consistent with
the experimental observations.

Step 4 Click on the Data button to download the datasets used to
train and test the model.

Step 5 Click on the Citation button to find the relevant article that
documents the detailed development and algorithm of
iRNA-Methyl.

Conclusions

Encouraged by the successes of pseudo amino acid composition
(PseAAC) in dealing with protein/peptide sequences, a new

iRNA-Methyl: Identifying RNA N®-methyladenosine sites
using pseudo nucleotide compositions

| Read Me | Data | Citation |

Enter the query RNA sequences in FASTA format (Example):

Submit Clear

Fig.6. Semi-screenshot showing the top page of the iRNA-Methyl web-server. Its
website address is http://lin.uestc.edu.cn/server/iRNA-Methyl.
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predictor called iRNA-Methyl has been proposed for identifying
mPA sites in the S. cerevisiae genome by incorporating the global
and long-range sequence pattern information of RNA via the
pseudo k-tupler nucleotide composition (PseKNC) approach. The
jackknife test on a rigorous benchmark dataset demonstrates that
the iRNA-Methyl predictor is very promising.

Although the current iRNA-Methyl was trained by the bench-
mark dataset derived from S. cerevisiae genome, it can be extended
to analyze the genomes of other species as well if trained by the
benchmark datasets from those species.

In particular, it has not escaped our notice that the current
approach and its mathematical frame can also be used to develop
different computational predictors for identifying various other
modification sites in RNA.

A user-friendly web-server for iRNA-Methyl has been estab-
lished at http://lin.uestc.edu.cn/server/iRNA-Methyl by which users
can easily obtain their desired results without the need to go
through the complicated mathematics involved, which was pre-
sented here just for its integrity. It is anticipated that iRNA-Methyl
may become a useful high-throughput tool for conducting genome
analysis.
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