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Abstract

Widespread sequencing efforts are revealing unprecedented amount of genomic variation in populations. Such infor-
mation is routinely used to derive consensus reference sequences and to infer positions subject to natural selection. Here,
we present a new molecular evolutionary method for estimating neutral evolutionary probabilities (EPs) of each amino
acid, or nucleotide state at a genomic position without using intraspecific polymorphism data. Because EPs are derived
independently of population-level information, they serve as null expectations that can be used to evaluate selective
forces on alleles at both polymorphic and monomorphic positions in populations. We applied this method to coding
sequences in the human genome and produced a comprehensive evolutionary variome reference for all human proteins.
We found that EPs accurately predict neutral and disease-associated alleles. Through an analysis of discordance between
allelic EPs and their observed population frequencies, we discovered thousands of novel candidate sites for nonneutral
evolution in human proteins. Many of these were validated in a joint analysis of disease-associated variants and pop-
ulation data. The EP method is also directly applicable to the analysis of noncoding sequences and genomic analyses of
nonmodel species.
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Introduction
According to the neutral theory of molecular evolution, in-
traspecific variation is a transient phase of interspecific evo-
lution (Kimura 1983). Therefore, patterns of genome
conservation and divergence observed across species should
predict the frequency and fate of genomic variation within a
species. Based on this principle, we developed a new method
to estimate the neutral evolutionary probability (EP) of amino
acid state at a protein position (or each possible nucleotide
state at a genomic position) in a given species using only the
interspecific evolutionary history of the position. In the new
method, population-level information on observed alleles is
not needed when deriving EPs. This independence enables EPs
to serve as null expectations when evaluating variation in one
or more populations. Collectively, EPs over all positions con-
stitute a multistate evolutionary variome (eVar), which is un-
affected by the patterns of population sampling, vagaries of
genetic drift within populations, and local changes in natural
selection. Therefore, this method can be used to evaluate
alleles at both polymorphic and monomorphic positions in
a population, including all known and unknown variants.

New Approaches
The new approach aims to estimate the EP of observing an
amino acid residue at a protein position (focal position) in a

given species using a multispecies sequence alignment and
phylogenetic relationships among sequences, independent of
population-level information on the frequency of alleles at
the focal position. To accomplish this, we use a Bayesian
framework to calculate the posterior probability (PP) for
each possible residue state at a given position in a species
(species 1 in fig. 1), where the multispecies alignment is mod-
ified to replace the residue at the focal position with a missing
data symbol (see Materials and Methods). Then, we compute
multiple PP values by progressively pruning evolutionary lin-
eages that are sister groups to species 1. For the example in
figure 1A, we compute PP0 using the whole data set, PP1 after
pruning sister group containing species 2, and PP2 after addi-
tional pruning of the sister group containing species 3. Then,
we obtain the EP as an average of PPi values weighted by the
evolutionary time depth of the closest relative of species 1
(human in our case) in the corresponding evolutionary tree
used. The iterative pruning and the normalization by evolu-
tionary time is intended to ameliorate the effects caused by
incomplete species sampling and evolutionary extinction of
species. We tested the effect of decreasing species sampling by
sequentially removing the closest species to humans and their
corresponding sequences from the data set. In this analysis,
EPs showed a 23% lower variance than PPs (fig. 1B), and thus
are more robust to bias due to incomplete species coverage
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than PPs. For a given protein, EPs were estimated for each
position independently, which collectively represent a multi-
state eVar. Although we described the new approach using
amino acid sequences as an example, it can be directly applied
for the analysis of nucleotide sequences, which would pro-
duce EPs for different nucleotide bases when using a nucleo-
tide sequence alignment and phylogenetic relationships.

Results and Discussion
We applied the new method to estimate eVar for all proteins
in the human genome, which were compiled based on the
National Center for Biotechnology Information (NCBI) RefSeq
annotations of the human genome build GRCh37 (also
known as hg19). For genes producing multiple isoforms of
proteins, the longest isoform was used (see Materials and
Methods). We used a phylogenetic tree that included 46 ver-
tebrate species spanning over 500 My (Kumar et al. 2012). For
each position in a given human protein, EP was calculated for
each of the 20 possible amino acid residues (alleles) using the
protein sequence alignment. Figure 2 shows eVar for a small
protein (NP_000064, CD3G). In eVar, evolutionarily likely al-
leles will have high EP values and evolutionarily unlikely alleles
will have low EP values. Conserved positions tend to have one
dominant allele with high EP and variable positions tend to
have multiple alleles with EP 4 0.05.

Proteome-Wide EP Estimates

For the human protein collection, EPs of alleles were calcu-
lated for 10,575,180 amino acid positions in 18,390 protein

sequences. Collectively, these estimates constitute the prote-
omic eVar for human. Consistent with the expectation that
most new mutations are deleterious, 94.4% of alleles in eVar
had EPs lower than 0.05. For alleles with EP� 0.05, the allelic
EP distribution was right skewed at ultraconserved positions
(fig. 3A), because these positions are constrained to allow only
one amino acid. In contrast, the distribution is left skewed at
least conserved positions, which have permitted multiple
amino acids over the long-term evolutionary history
(fig. 3D). A scarcity of alleles with intermediate EPs evokes
the U-shaped theoretical distribution of allele frequencies of a
population under the neutral models (Crow 2005; Haegeman
and Weitz 2012).

Comparing EPs Versus Population Frequencies

We first constructed a consensus sequence for each human
protein based on the reference genome (GRCh37) and the
1000 Genomes (1KG) data (phase 3). This consensus se-
quence consists of 10,324,216 monomorphic positions
(allele frequency = 100%) and major alleles at 250,964 poly-
morphic positions. At 96% of all positions, human consensus
alleles had the highest EPs. At polymorphic positions, allelic
EPs were strongly correlated with observed population fre-
quencies (Pearson correlation coefficient = 0.99, P<< 0.01;
fig. 4A). These observations confirm the neutral theory
(Kimura 1983) prediction that relates long- and short-term
evolutionary patterns.

However, we observed high dispersion in EP distributions,
where alleles with similar population frequencies showed a

FIG. 1. EP calculation. (A) A simple tree of four sequences. Leaf nodes are marked by open circles, where the observed amino acid residues are denoted
by z1,. . ., z4. Residues at ancestral nodes are denoted by y5 and y6. Along each branch, a branch length (b1,. . ., b5) is displayed. (B) Standard deviations of
PPs (black bars) and EPs (gray bars) when species and their corresponding sequences were progressively pruned from the data set. Data were derived
from 100 randomly selected human protein sequences and the evolutionary lineages of human and 45 species (Kumar et al. 2012).

FIG. 2. eVar for a small protein (NP_000064, CD3G). At each position, the black bar represents the allele with the highest EP and the gray bar represents
the allele with the second highest EP. All other alleles contribute EPs (aggregated and represented by white space) such that the total EP is 1.0.
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wide range of EPs (shaded area in fig. 4A). This is because the
frequencies of alleles segregating today are a product of their
time of origin, the intensity of natural selection, and genetic
drift. Ultimately, large variances can be attributed to genetic

drift that has driven most standing alleles toward loss or fix-
ation in the population (Kimura 1983). In general, low EP
alleles showed lower allele frequencies (fig. 4B), whereas
high EP alleles had rather high frequencies (fig. 4D).

EPs for Disease-Associated Alleles

We also tested the efficacy of EPs to discriminate between
neutral and disease-associated alleles, a vast majority of which
are expected to be under negative selection (Dudley et al.
2012). We made use of two existing sets of benchmark
data. The first benchmark data set (HumVar; Adzhubei
et al. 2010) contains 20,957 deleterious single nucleotide poly-
morphisms (SNPs) associated with diseases (positive controls)
and 18,411 common population polymorphisms (negative
controls). EPs showed a quickly rising receiver operating
characteristic (ROC) curve that contrasts the false positive
and true positive diagnosis rates at different EP thresholds
(fig. 5A). This trend shows that EPs will afford high rates of
correct diagnosis of disease alleles at low rates of false positive
diagnosis. The area under the curve (AUC) value for EPs was
high (0.89) and similar to that for classical and recently de-
veloped methods, including SIFT (0.88), PolyPhen-2 (0.89),
and CADD (0.84) for the same collection of variants (Ng
and Henikoff 2001; Adzhubei et al. 2010; Kircher et al.
2014). Thus, EPs perform comparably with other mutation
diagnosis methods that require the use of disease-associated
variants and neutral population polymorphisms to build pre-
dictive models. Dependencies on the use of such training data
in building predictive models are known to cause problems
for such classifiers, as their performances decline when ap-
plied to variants not represented in the training data sets
(Dorfman et al. 2010; Cline and Karchin 2011).

Our second benchmark data set (CNO; Capriotti and
Altman 2011) consisted of 3,128 cancer driver mutations
(positive controls) and 3,046 passenger mutations (negative
controls). Again, EP shows a quickly rising ROC curve and a
high AUC (0.84; fig. 5A). Therefore, we expect allelic EPs to be
useful in prioritizing variants in biological and clinical investi-
gations, even when sufficient population variation data are
not available to train good predictive models.

Putatively Deleterious Population Variation

The ROC curve in figure 5A shows that an EP value of 0.0022
produced a 10% rate of false positive diagnosis for the
HumVar benchmark data. Using this threshold, we identified
putatively deleterious variation reported in the 1KG popula-
tion survey (1000 Genomes Project Consortium et al. 2012)
(fig. 5B). The proportion of deleterious alleles was higher than
the false positive rate only for alleles that occur with popula-
tion frequency of 1% or lower, with the highest percentage
(30%) of deleterious alleles seen in the collection of private
variants. This overall trend may be explained by the action of
negative selection, which would prevent deleterious alleles
from rising to high frequencies.

The effect of negative selection can be directly observed by
comparing EPs of minor alleles found in heterozygous and
homozygous genotypes in individuals. In 1KG data, we found

FIG. 3. Distributions of allelic EPs at positions over a spectrum of con-
servation level, from highly conserved to highly variable. A total of
10,575,180 amino acid positions in 18,390 proteins were grouped into
ultraconserved (A), well conserved (B), less conserved (C), or least con-
served (D). Only alleles with EP4 0.05 are included.
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31,835 SNPs that have at least one homozygous individual
and 213,079 SNPs that exist only in heterozygous states.
Overall, alleles found only in heterozygotes are 25 times less
evolutionarily likely than those found as homozygotes (aver-
age EP = 0.001 vs. 0.025, P<< 0.01). Furthermore, this pattern
varied when we stratified SNPs by their positional conserva-
tion and population frequency (fig. 5C). The greatest differ-
ence is observed for common alleles (population
frequency 4 5%) at ultraconserved positions. EPs for homo-
zygous and heterozygous alleles were quite similar at less
conserved positions or least conserved positions, because
they are under lower functional and, thus, evolutionary
constraints.

EPs Predict Potentially Adaptive Alleles

Analysis of EPs also revealed many alleles present at unexpect-
edly high frequency in humans. These constitute signs of po-
tential nonneutral (e.g., adaptive) evolution. We found 36,691
evolutionarily unlikely alleles (EP< 0.05) that occur at 100%
frequency in the 1KG data, that is, these evolutionarily un-
likely alleles appear to be fixed in modern humans. Although
this set represents a miniscule proportion of all positions an-
alyzed (0.4%), it likely contains many candidates for adaptive
evolution. We reasoned that if the fixation of an evolutionarily
unlikely allele at a position was due to adaptation (including
functional compensation), then mutations that revert back to
an evolutionarily likely (high EP) allele would be detrimental.
To search for such cases, we examined EPs of 54,034 missense
mutations in the HGMD database (Stenson et al. 2009), which
are implicated in Mendelian disorders and absent from 1KG
data. We found ten positions where a mutation from a low EP
allele (<0.05) to a high EP allele (40.50) was associated with a
Mendelian disease (table 1).

One of these genes (USP26) was previously identified as
experiencing positive selection in a study that analyzed the
ratio of nonsynonymous to synonymous differences in the
genomes of humans and chimpanzees (Nielsen et al. 2005).
This gene is involved in spermatogenesis, and mutation to an
evolutionarily likely allele at position 165 causes Azoospermia
(Asadpor et al. 2013). For the other nine alleles, genomic
scanning that compared humans and other species failed
to infer nonneutral evolution (Nielsen et al. 2005; Zhang
et al. 2010), either due to the low statistical power of tradi-
tional methods in multispecies analysis (Arbiza et al. 2006) or
because these adaptive variants are fixed in the human pop-
ulation and are, thus, not detectable in population scans.

FIG. 4. Relationship of allelic EPs with their observed population fre-
quencies in the 1000 Genomes (1KG) data. (A) A scatter plot showing
the relationship of population frequencies of alleles and their average
EPs. A total of 250,964 nSNVs were binned into population frequencies
in increments of 1% and plotted against average allelic EPs (black circle)

FIG. 4. Continued
and their standard deviation (shaded area). The observed correlation is
high for the running average (Pearson correlation coefficient
[PCC] = 0.99, P<< 0.01) and for individual EPs (PCC = 0.90,
P<< 0.01). A similarly strong relationship was observed when EPs
were binned first and their average allele frequencies were considered
(PCC = 0.90, P<< 0.01). Distributions of population frequencies of al-
leles with similar evolutionary probabilities: (B) EP = 0.05� 0.01, (C)
EP = 0.50� 0.01, and (D) EP = 0.95� 0.01. Fitted lines of second order
of polynomial regression were shown.

248

Liu et al. . doi:10.1093/molbev/msv198 MBE
 at K

ing A
bdulaziz U

niversity on A
pril 24, 2016

http://m
be.oxfordjournals.org/

D
ow

nloaded from
 

http://mbe.oxfordjournals.org/


FIG. 5. Application of EPs to diagnose disease-associated variants. (A) ROC curves displaying the true positive rates at different levels of false positive
rates when using allelic EPs to predict disease-associated alleles. Positive (disease) and negative (nondisease) control variants in two benchmark data sets
were used, one (Adzhubei et al. 2010) for diagnosing alleles associated with Mendelian diseases (solid line) and the other (Capriotti and Altman 2011) for
cancer-associated alleles (broken line). (B) Predicted proportion of nonneutral alleles in the 1000 Genomes data. EP threshold of 0.0022 corresponds to a
false positive rate of 10% (dotted line, panel A). Results are shown separately for polymorphisms with low and high frequencies. The numbers of alleles
predicted to be deleterious and the total number of alleles are shown above each bar. (C) Average EP of alleles occurring in homozygous genotypes
(black bars) and those occurring only as heterozygotes (gray bars). Alleles are grouped by their positional conservation into ultra, well, less, and least
conserved categories and minor allele frequency (MAF) in the 1KG data set (rare: MAF< 1%; low: MAF 1–5%; common: MAF 4 5%).
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EPs for Coding Alleles Implicated in Complex Diseases

We also looked for evidence of nonneutral evolution in the
collection of variants that have been strongly associated with
complex diseases or quantitative traits in genome-wide asso-
ciation studies (GWAS). We found 376 positions harboring
nonsynonymous SNPs (nSNPs) in the GRASP 2.0 database,
which aggregates more than 6 million SNP–phenotype asso-
ciations from 2,082 GWAS studies (Leslie et al. 2014). The
same 376 nSNPs were also found in the 18,152 high confi-
dence variants available from the NHGRI GWAS catalog. A
substantial proportion of these positions (13%) contained low
EP alleles that have high population frequency (450%) in the
1KG data. These low EP, high-frequency alleles are potentially
involved in nonneutral evolution, including adaptive evolu-
tion. In fact, six of these positions (table 1) are located in genes
that are already implicated as targets of positive selection in
previous population genomic analyses (Li et al. 2014). This
interpretation is supported by the observation of low EP al-
leles at a vast majority of positions that have been implicated
in ongoing adaptive change in comprehensive population
genomic analyses (Grossman et al. 2013) (table 2). These re-
sults demonstrate the usefulness of EP to complement tradi-
tional methods in the discovery of alleles that deviate from
neutral expectations.

EP Versus Other Mutation Diagnosis Methods

Several methods are available to estimate impact scores for
alternative alleles (Sunyaev 2012); these scores are used to
diagnose alleles as functionally neutral or nonneutral. Using
100,000 randomly chosen human population polymorphisms

from the 1KG data, we explored the relationship of EP scores
with impact scores produced by SIFT, PolyPhen-2, EvoD, and
CADD (Ng and Henikoff 2001; Adzhubei et al. 2010; Kumar
et al. 2012; Kircher et al. 2014). In all cases, EPs showed a strong
positive correlation (fig. 6), primarily because all the
approaches use similar evolutionary information. However,
many differences were also revealed. In particular, many
minor alleles with low EPs (EP< 0.05; nonneutral) receive
“neutral” impact scores with current methods. These in-
cluded potentially nonneutral alleles that are candidates for
positive selection identified by comprehensive scan of the
1KG data (table 2). Although most (85%) of them have
EP< 0.05, SIFT, PolyPhen-2, and EvoD deemed a vast majority
to be either neutral or undiagnosable (73%, 92%, and 77%,
respectively). These methods failed to diagnose these variants
because they all use intraspecific variation data along with
interspecies information during their calculation. This is also
the reason why putatively adaptive alleles fixed in human
population, as well as many other known high-frequency al-
leles shown in table 1, also received neutral diagnosis via these
methods but were found to be nonneutral in EP calculations.

In conclusion, our new method produces an eVar for a
given genome using interspecific evolutionary history, which
will prioritize function-impacting variants and identify posi-
tions that have undergone adaptive and other nonneutral
evolution. This method can be applied to any species to gen-
erate reference variant sets for any part of its genome as long
as multispecies sequence alignments can be assembled. The
eVar for human proteins will be publicly available on the
myPEG server (www.mypeg.info).

Table 1. Evolutionarily Unlikely Alleles Occurring with High Frequency in Humans, But associated with Diseases and Other Traits.

Gene Variant Major Allele Disease/Trait

EP Frequency

Monomorphic

PRSS1 N29T 0.004 100% Hereditary pancreatitis

F8 L69V 0.006 100% Hemophilia A

FOXI1 P239L 0.007 100% Pendred syndrome

CYP21A2 M240K 0.007 100% 21-hydroxylase deficiency

CYP2A6 K194E 0.008 100% Altered activity

PKD1 L2696R 0.009 100% Polycystic kidney disease 1

USP26a L165S 0.010 100% Azoospermia/oligozoospermia

RHCE Q233E 0.011 100% Rhesus blood group variant

CRB1 G959S 0.019 100% Retinitis pigmentosa

MLL2 P4353L 0.037 100% Kabuki syndrome

Polymorphic

STAT2a M594I 0.011 95% Height

APOEa C130R 0.007 85% Alzheimer’s disease biomarkers

ICAM1a K469E 0.046 65% Soluble ICAM-1

KNG1a I581T 0.003 58% Activated partial thromboplastin time

CFHa V62I 0.005 57% Serum myeloperoxidase levels

COL11A1a L1335P 0.002 53% Glaucoma (primary open angle)

NOTE.—Allele frequencies are from the 1000 genomes data.
aDenotes genes that have been shown to be under positive selection in past studies analyzing human population data and comparison with other species (Nielsen et al. 2005;
Zhang et al. 2010; Grossman et al. 2013; Li et al. 2014).
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Materials and Methods

Computation of EP

To estimate the EP of observing an amino acid residue at a
sequence position in a given species, we employ a Bayesian
framework, a multispecies alignment consisting of ortholo-
gous sequences, and the phylogenetic tree relating the species
in the alignment. For a simple data set consisting of four
aligned orthologous sequences, let zi represents the residue
at the focal position in the contemporary sequence Si, such
that z = (z1, z2, z3, z4), and the ancestral states are given by the
vector y = (y5, y6) (fig. 1A). We aim to estimate the relative
likelihood of different residues at node 1. The PP for each
possible residue is given by

PP ¼ f z1 j z
�; b�ð Þ ¼

f z1ð Þ � f z� j y; b�ð Þ

f z�; b�ð Þ
; ð1Þ

where z* is the vector of observed residues at the given po-
sition with the constraint that the residue in species 1 at that
position is unknown, that is, z* = (“?”, z2, z3, z4). And, b* is the
vector of branch lengths (b1,. . ., b5) that is computed by using
a maximum-likelihood method for the protein-specific amino

acid alignment where the amino acid at the focal position is
replaced by a missing data symbol. Under a time-reversible
model of amino acid substitution, the evolutionary change of
state can be assumed to start from any node of the tree, say
y5. Then, the first component in equation (1) is given by

f z1ð Þ ¼ gy5
� Py5z1

ðb1Þ; ð2Þ

where Py5z1
ðb1Þ is the probability of change from residues y5

to z1. gy5
is the frequency of residue y5 in the sequence data in

the altered alignment as specified above. The second compo-
nent in equation (1) is given by

f z� j y; b�ð Þ ¼ Py5z2
b2ð Þ � Py6z3

b3ð Þ � Py6z4
b4ð Þ � Py6y5

b5ð Þ:

ð3Þ

And, the denominator in equation (1) is given by

f z�; b�ð Þ ¼
X

z1

X
y5

X
y6

gy5
� Py5z1

b1ð Þ

� Py5z2
b2ð Þ � Py6z3

ðb3Þ � Py6z4
ðb4Þ � Py6y5

ðb5Þ;

ð4Þ

Table 2. Putative Positively Selected Alleles and Their Diagnosis.

Protein Varianta Population Evolutionarily Unexpected High-Frequency Allele

Amino Acid Frequency (%) EP SIFT PolyPhen-2 EvoD

NP_995322 T111A CEU T 100 0.001 Non-N — —

NP_057264 F374L CEU F 98 0.004 Non-N Non-N —

NP_006336 M50V CHB, JPT V 96 0.006 N N N

NP_071731 V370A CHB, JPT A 95 0.002 Non-N N Non-N

NP_057645 M140R YRI M 92 0.002 Non-N — —

NP_002033 M26V CHB, JPT M 90 0.005 N — —

NP_003259 F616L YRI F 89 0.237 N — —

NP_002215 L2436V YRI L 85 0.002 N — —

NP_006585 L480S YRI S 84 0.003 N N Non-N

NP_057565 V324M YRI M 84 0.031 N N N

NP_001136235 D435A CHB, JPT A 83 0.002 N Non-N Non-N

NP_006579 D5E CHB, JPT D 82 0.005 N — —

NP_002199 R482Q YRI Q 81 0.006 N N N

NP_861445 P267L CHB, JPT L 79 0.089 N N N

NP_055861 I2587V CEU I 74 0.013 N — —

NP_062818 S112A YRI S 67 0.005 N — —

NP_001122087 L367V YRI V 64 0.022 Non-N N N

NP_073594 T324P CEU P 63 0.009 N N N

NP_002199 V1019A YRI A 62 0.046 N N N

NP_060224 Q454R CEU Q 62 0.111 N — —

NP_057457 A179T CEU T 59 0.002 N N Non-N

NP_114157 R2141W YRI W 57 0.023 Non-N — N

NP_061139 R390Q YRI Q 54 0.040 N N N

NP_004160 L474F YRI F 43 0.007 Non-N N Non-N

NP_001009894 V238L CEU V 42 0.110 N — —

NP_060328 A111G CHB, JPT G 40 0.001 N N Non-N

NOTE.—Alleles potentially involved in positive selection, reported in a comprehensive scan of 1000 Genome data by Grossman et al. (2013) are shown.
aEach variant is shown in the format of reference allele as defined in hg19 RefSeq annotation followed by position and alternative allele. For each evolutionary unexpected allele
reported to be under positive selection, its population frequency, EP, and neutrality predictions from SIFT (Ng and Henikoff 2001), PolyPhen-2 (Adzhubei et al. 2010), and EvoD
(Kumar et al. 2012) are shown. N, neutral; Non-N, nonneutral; —, no result because the mutant high-frequency population-specific allele is found in the reference genome as the
consensus allele. Allele frequencies are from the corresponding populations in the 1000 Genomes data.
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where z1, y5, and y6 are allowed to take all possible amino acid
states. Using the probabilities f z1 j z

�; b�ð Þ for all possible
combinations of amino acid states z1, y5 and y6, the proba-
bilities of all sets of allele (e.g., z1 = Ala, y5, y6) are summed to
get the PP of any amino acid state (e.g., Ala) at z1:

PP z1 ¼ Alað Þ ¼

X
y;z1¼Ala

f ðAlaÞ � f z� j y; b�ð Þ

f z�; b�ð Þ
: ð5Þ

For computing transition probabilities, we used a time-
reversible model of substitution with equal probability of
change from one amino acid to another (uniform prior at a
given position) in order to avoid imposing a specific model of
substitution on individual positions. This is important be-
cause it is becoming clear that the instantaneous substitution
matrix for different positions is not the same (Lartillot and
Philippe 2004). So, it is better to be conservative and not use
standard, global substitution matrices when predicting the
variome by molecular evolutionary analyses. Analyses using
an equal evolutionary rate across positions in proteins pro-
duced PP estimates similar to those obtained when using a
gamma distribution of rates across sites with 5 discrete
categories.

To estimate EP, we compute multiple PP values by pro-
gressively pruning evolutionary lineages that are sister groups
to the species of interest (species 1 here). For the example in
figure 1A, we compute PP0 using the whole data set, PP1 after
pruning S2 that previously induced ancestral node 5, and PP2

after additionally pruning S3 that previously induced ancestral
node 6. Then, we obtain the EP as an average of PPi values
weighted by the evolutionary time depth of the closest rela-
tive of species 1 (human) in the evolutionary tree used (Ti).
Specifically,

EP z1 ¼ Alað Þ ¼
X

w

PP z1 ¼ Ala; wð Þ � TðwÞX
w

TðwÞ
; ð6Þ

where T(w) is the evolutionary divergence time between spe-
cies 1 and species w, and PP(w) is computed by retaining only
those species in the tree that share a common ancestor with
humans starting with the ancestral node w and earlier.

The above method can be directly applied for the analysis
of nucleotide sequences, which would produce EPs for differ-
ent nucleotide bases by using a nucleotide sequence align-
ment and their phylogenetic relationships. More generally,
one can apply this method for any sequence alignment
where the evolutionary tree relating the sequences assumed
a priori or inferred from the alignment. If evolutionary diver-
gence times for nodes in the tree are not available, then one
could employ a simple average instead of weighted average in
equation (6) or use alternative measures of node depth (e.g.,
relative divergence times obtained using the RelTime method;
Tamura et al. 2012) or linearized tree (Takezaki et al. 1995).

EP Analysis of Human Proteins

A total of 18,621 protein-coding genes were defined in the
NCBI RefSeq database in the human genome build GRCh37.
For each protein, the alignments of orthologous amino acid
sequences in 46 vertebrate species were downloaded from
the UCSC Genome Browser. Due to alternative splicing, mul-
tiple isoforms of proteins were found for 5,026 genes. In these
cases, the longest isoform and its alignments were used, such
that each gene and each position had only one representation
in the eVar. Because the multiple alignments were derived
based on sequence similarity and synteny (Miller et al. 2007),
they consist of homologous exons. In a given species, if an
exon homologous to a human exon was not found, these
positions were represented as missing data (or “gaps”). We
excluded 231 sequences/genes because the UCSC human se-
quences in the downloaded alignments were different from
the RefSeq canonical sequences (similarity <98%). This re-
sulted in 18,390 human proteins with alignments of ortholo-
gous sequences, to which we applied the new EP method.
Here, divergence times were obtained from the Timetree re-
source (Kumar and Hedges 2011).

We set EP to 1 for the observed human allele and 0 for all
other alleles at positions where only human sequences iden-
tified an amino acid residue (i.e., missing or insertion/deletion
for the rest of the species in the UCSC alignments). Changes
in the first position in a protein, early termination via gain of
stop codons, and extension via loss of stop codons were not

FIG. 6. Relationship of EPs of human population polymorphisms with
their impact scores produced by PolyPhen-2, SIFT, CADD, and EvoD.
Using the 1KG data (1000 Genomes Project Consortium et al. 2012),
100,000 population polymorphisms were randomly selected. EPs and
impact scores were calculated for minor alleles. Variants were grouped
according to their EPs and violin plots produced to display the spread of
impact scores from (A) SIFT, (B) PolyPhen-2, (C) CADD, and (D) EvoD. A
violin plot displays the distribution of the impact scores for each group
of variants; the white circle shows the median score and the black box
shows the interquartile range.

252

Liu et al. . doi:10.1093/molbev/msv198 MBE
 at K

ing A
bdulaziz U

niversity on A
pril 24, 2016

http://m
be.oxfordjournals.org/

D
ow

nloaded from
 

http://mbe.oxfordjournals.org/


considered. To expedite calculations, we compared the EP
estimates obtained position-by-position following the above
procedure with those obtained simultaneously for all posi-
tions in a protein. This approximation involves generating PPs
without replacing the site-specific bases by a missing symbol,
which reduced the number of calculations per protein from
the length of a protein to only one. The results were either
identical or extremely similar (differ in the value in the third
decimal place). Therefore, we have reported EPs generated
using the faster method. In total, the eVar consists of alleles
and their EPs at 10,575,180 amino acid positions in 18,390
protein sequences.

Conservation Categories

Using the same set of multiple alignments of orthologous
sequences from 46 species, we estimated the evolutionary
rate (r) of a protein position as the absolute substitution
rate, reported as the number of substitutions per site per
billion years (Kumar et al. 2012). A position is regarded as
ultraconserved if r = 0, well conserved if 0< r� 1, less con-
served if 1< r� 2, or least conserved if r 4 2.

EP Analysis of Variants

We analyzed EPs for a wide collection of variants in human
proteins, including population polymorphisms, variants asso-
ciated with Mendelian diseases, complex diseases or somatic
cancers, and variants under positive selection. Population
polymorphisms were retrieved from the 1000 Genomes
Project phase 3 data (1KG) (1000 Genomes Project
Consortium et al. 2012) that contained 250,964 nSNPs and
their overall population frequencies. From the HGMD data-
base, we retrieved 60,502 missense mutations implicated in
heritable diseases. We removed 6,468 mutations that con-
tained potential annotation errors or are present in the
1KG data. The remaining 54,034 mutations were regarded
as associated with Mendelian diseases. Variants associated
with complex diseases were downloaded from the GRASP
2.0 database, which aggregates more than 6 million SNP–
phenotype associations from 2,082 GWAS studies (Leslie
et al. 2014). Among these associations, 376 unique missense
variants were identified based on their chromosomal loca-
tions and primary protein isoforms, as well as presence in the
1KG data. Positions that were previously reported to be under
positive selection were collected from studies that compared
human with other species (Nielsen et al. 2005; Zhang et al.
2010) or scanned 1000 Genome data using population statis-
tics (Grossman et al. 2013; Li et al. 2014).

To evaluate the accuracy of EP and other methods in di-
agnosing disease-associated variants, we used two existing
sets of benchmark data. The first benchmark data set
(HumVar; Adzhubei et al. 2010) consisted of 20,957 deleteri-
ous SNPs associated with diseases (positive controls), and
18,411 common population polymorphisms (negative con-
trols). The second benchmark data set (CNO; Capriotti and
Altman 2011) consisted of 3,128 cancer driver mutations
(positive controls) and 3,046 passenger mutations (negative

controls). PolyPhen-2, SIFT, and CCAD predictions were ob-
tained from the dbNSFP database (Liu et al. 2013).

To cross-reference different sets of variants with the cor-
responding EPs, variants were first mapped to chromosomal
locations in the human genome build GRCh37/hg19 and
then to amino acid positions in the longest isoform of pro-
teins as defined in NCBI RefSeq. Affected codons were iden-
tified, based on which wild-type and mutant nucleotides were
translated into amino acid alleles. Unique variants were iden-
tified based on their chromosomal locations, RefSeq protein
IDs, amino acid positions, wild-type and mutant alleles.

Acknowledgments

We thank S. Miura, J. Hey, R. Patel, K. Xu, G. Gibson, H. Rowe,
and R. Kanda for comments. This work was supported by
research grants from the National Institutes of Health
(DK098242-03 to Joel Dudley and HG-002096-12 to S.K.).

References
1000 Genomes Project Consortium, Abecasis GR, Auton A, Brooks LD,

DePristo MA, Durbin RM, Handsaker RE, Kang HM, Marth GT,
McVean GA. 2012. An integrated map of genetic variation from
1,092 human genomes. Nature 491:56–65.

Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P,
Kondrashov AS, Sunyaev SR. 2010. A method and server for pre-
dicting damaging missense mutations. Nat Methods. 7:248–249.

Arbiza L, Dopazo J, Dopazo H. 2006. Positive selection, relaxation, and
acceleration in the evolution of the human and chimp genome.
PLoS Comput Biol. 2:e38.

Asadpor U, Totonchi M, Sabbaghian M, Hoseinifar H, Akhound MR, Zari
Moradi S, Haratian K, Sadighi Gilani MA, Gourabi H, Mohseni
Meybodi A. 2013. Ubiquitin-specific protease (USP26) gene alter-
ations associated with male infertility and recurrent pregnancy loss
(RPL) in Iranian infertile patients. J Assist Reprod Genet. 30:923–931.

Capriotti E, Altman RB. 2011. A new disease-specific machine learning
approach for the prediction of cancer-causing missense variants.
Genomics 98:310–317.

Cline MS, Karchin R. 2011. Using bioinformatics to predict the functional
impact of SNVs. Bioinformatics 27:441–448.

Crow JF. 2005. An introduction to population genetics theory. Caldwell
(NJ): Blackburn Press.

Dorfman R, Nalpathamkalam T, Taylor C, Gonska T, Keenan K, Yuan
XW, Corey M, Tsui LC, Zielenski J, Durie P. 2010. Do common in
silico tools predict the clinical consequences of amino-acid substi-
tutions in the CFTR gene? Clin Genet. 77:464–473.

Dudley JT, Kim Y, Liu L, Markov GJ, Gerold K, Chen R, Butte AJ, Kumar S.
2012. Human genomic disease variants: a neutral evolutionary ex-
planation. Genome Res. 22:1383–1394.

Grossman SR, Andersen KG, Shlyakhter I, Tabrizi S, Winnicki S, Yen A,
Park DJ, Griesemer D, Karlsson EK, Wong SH, et al. 2013. Identifying
recent adaptations in large-scale genomic data. Cell 152:703–713.

Haegeman B, Weitz JS. 2012. A neutral theory of genome evolution and
the frequency distribution of genes. BMC Genomics 13:196.

Kimura M. 1983. The neutral theory of molecular evolution. Cambridge:
Cambridge University Press.

Kircher M, Witten DM, Jain P, O’Roak BJ, Cooper GM, Shendure J. 2014.
A general framework for estimating the relative pathogenicity of
human genetic variants. Nat Genet. 46:310–315.

Kumar S, Hedges SB. 2011. TimeTree2: species divergence times on the
iPhone. Bioinformatics 27:2023–2024.

Kumar S, Sanderford M, Gray VE, Ye J, Liu L. 2012. Evolutionary diagnosis
method for variants in personal exomes. Nat Methods. 9:855–856.

Lartillot N, Philippe H. 2004. A Bayesian mixture model for across-site
heterogeneities in the amino-acid replacement process. Mol Biol
Evol. 21:1095–1109.

253

Molecular Evolutionary Reference . doi:10.1093/molbev/msv198 MBE
 at K

ing A
bdulaziz U

niversity on A
pril 24, 2016

http://m
be.oxfordjournals.org/

D
ow

nloaded from
 

http://mbe.oxfordjournals.org/


Leslie R, O’Donnell CJ, Johnson AD. 2014. GRASP: analysis of genotype-
phenotype results from 1390 genome-wide association studies and
corresponding open access database. Bioinformatics 30:i185–i194.

Li MJ, Wang LY, Xia Z, Wong MP, Sham PC, Wang J. 2014. dbPSHP: a
database of recent positive selection across human populations.
Nucleic Acids Res. 42:D910–D916.

Liu X, Jian X, Boerwinkle E. 2013. dbNSFP v2.0: a database of human non-
synonymous SNVs and their functional predictions and annota-
tions. Hum Mutat. 34:E2393–E2402.

Miller W, Rosenbloom K, Hardison RC, Hou M, Taylor J, Raney B,
Burhans R, King DC, Baertsch R, Blankenberg D, et al. 2007.
28-way vertebrate alignment and conservation track in the UCSC
Genome Browser. Genome Res. 17:1797–1808.

Ng PC, Henikoff S. 2001. Predicting deleterious amino acid substitutions.
Genome Res. 11:863–874.

Nielsen R, Bustamante C, Clark AG, Glanowski S, Sackton TB, Hubisz MJ,
Fledel-Alon A, Tanenbaum DM, Civello D, White TJ, et al. 2005. A

scan for positively selected genes in the genomes of humans and
chimpanzees. PLoS Biol. 3:e170.

Stenson PD, Mort M, Ball EV, Howells K, Phillips AD, Thomas NS,
Cooper DN. 2009. The Human Gene Mutation Database: 2008
update. Genome Med. 1:13.

Sunyaev SR. 2012. Inferring causality and functional significance
of human coding DNA variants. Hum Mol Genet. 21:R10–
R17.

Takezaki N, Rzhetsky A, Nei M. 1995. Phylogenetic test of the molecular
clock and linearized trees. Mol Biol Evol. 12:823–833.

Tamura K, Battistuzzi FU, Billing-Ross P, Murillo O, Filipski A, Kumar S.
2012. Estimating divergence times in large molecular phylogenies.
Proc Natl Acad Sci U S A. 109:19333–19338.

Zhang G, Pei Z, Krawczak M, Ball EV, Mort M, Kehrer-Sawatzki H,
Cooper DN. 2010. Triangulation of the human, chimpanzee, and
Neanderthal genome sequences identifies potentially compensated
mutations. Hum Mutat. 31:1286–1293.

254

Liu et al. . doi:10.1093/molbev/msv198 MBE
 at K

ing A
bdulaziz U

niversity on A
pril 24, 2016

http://m
be.oxfordjournals.org/

D
ow

nloaded from
 

http://mbe.oxfordjournals.org/

