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By modulating the accessibility of genomic regions to regulatory proteins, nucleosome positioning plays impor-
tant roles in cellular processes. Although intensive efforts have beenmade, the rules for determining nucleosome
positioning are far from satisfaction yet. In this study, we developed a biophysical model to predict nucleosomal
sequences based on the deformation energy of DNA sequences, and validated it against the experimentally deter-
mined nucleosome positions in the Saccharomyces cerevisiae genome, achieving very high success rates. Further-
more, using the deformation energy model, we analyzed the distribution of nucleosomes around the following
three types of DNA functional sites: (1) double strand break (DSB), (2) single nucleotide polymorphism (SNP),
and (3) origin of replication (ORI). We have found from the analyzed energy spectra that a remarkable “trough”
or “valley” occurs around each of these functional sites, implying a depletion of nucleosome density, fully in
accordance with experimental observations. These findings indicate that the deformation energy may play a
key role for accurately predicting nucleosome positions, and that it can also provide a quantitative physical ap-
proach for in-depth understanding the mechanism of nucleosome positioning.

© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

In eukaryotes, 75%–95%of genomic DNAs are packaged into chroma-
tins. The elementary structural unit of chromatin is nucleosome, formed
by ~147 base pairs (bp) of DNA wrapped in superhelical turns around
the surface of a histone octamer (composed of pairs of the four core
histones H2A, H2B, H3 and H4) [1]. The packaging of DNA around the
histone–octamer not only facilitates the storage of DNA in the limited
cell space but alsomakes it possible tomodulate the access of regulatory
proteins to genomic regions. A growing body of evidence shows that
nucleosomes play important roles in various biological processes,
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such asmRNA splicing, DNA replication and DNA repair [2–6]. Conse-
quently, revealing the mechanism involved in controlling nucleosome
positioning is fundamentally important for in-depth understanding
the subsequent steps of gene expression.

High-resolution genome-wide nucleosome maps are now available
for yeast, worms, flies and human genomes [7–10]. These high-
resolution data provide unprecedented opportunities for further in-
vestigation of themechanism of nucleosome positioning and its roles
in gene regulation.

Since the nucleosome positioning code in yeast [11] was reported,
variousmodels have been proposed to elucidate nucleosomeoccupancy
signals that determine the preference of a particular region to bind to
histone and form a nucleosome [12–14], stimulating the recent break-
through in developing computational predictors for identifying nucleo-
some positioning in genomes [15,16]. Although quite interesting and
encouraging, the predictors based on the sequence information alone
have been limited in their accuracy and resolution. Besides, the bench-
mark dataset used to train the sequence-based predictors may not be
representative of direct histone–DNA binding. Therefore, it is highly
desirable to develop a novel model that will have more direct and
close correlation with nucleosome positioning.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ygeno.2015.12.005&domain=pdf
mailto:kcchou@gordonlifescience.org
http://dx.doi.org/10.1016/j.ygeno.2015.12.005
www.elsevier.com/locate/ygeno
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Recently, Miele et al. [17] reported that DNA physical properties
were able to determine nucleosome occupancy from yeast to fly.
Morozov et al. [18] proposed an ab initio model to predict nucleo-
somes by measuring the free energies of nucleosome formation.
Nozaki et al. [19] andWu et al. [20] suggested the existence of a high-
ly bendable, fragile structure for nucleosomal DNA. By comparing the
six DNA physical parameters (twist, roll, tilt, shift, slide, and rise) be-
tween nucleosomal and linker DNA sequences, we found that these
DNA physical parameters are also quite useful for characterizing
the description of nucleosomal DNA sequences [21]. All these facts
indicate that there exists some structural code in DNA sequences
that may be of use for determining the genome-wide nucleosome
positioning.

The present study was devoted to investigate the deformation ener-
gy of DNA sequences and use it to develop a new model for predicting
nucleosome positions. Since nucleosome positioning may affect all
DNA-templated processes, it is important to analyze how those process-
es occur on nucleosome-structure DNA. But except for the transcrip-
tional regulation, there are many unknowns yet for the molecular
mechanisms of nucleosome positioning around the other functional
sites. In order to dissect the roles of nucleosome positioning on them,
we are to propose a biophysical model to analyze the distribution
pattern of nucleosomes near some important functional sites, such as
double strand break (DSB) site, single nucleotide polymorphism (SNP)
site, and origin of replication (ORI). Using the proposed model, we not
only have obtained the prediction results quite consistent with experi-
mental observations, but also can reveal the distribution pattern of
those nucleosomes that are near the aforementioned important func-
tional sites.

As done in a series of recent publications [22–32] in proposing new
analysis/prediction methods for biological systems, to make the
presentation logically more clear and the results objectively
more reliable, the following procedures [33] are followed: (1) con-
struct or select a valid benchmark dataset to train and test the pro-
posed model; (2) formulate the biological sequence samples with
an effective mathematical expression that can truly reflect their
intrinsic correlation with the target to be analyzed/predicted;
(3) introduce or develop a powerful algorithm (or engine) to op-
erate the analysis/prediction; and (4) properly perform cross-
validation tests to objectively evaluate the anticipated accuracy
of the model. Below, we are to elaborate how to deal with these
steps one by one.

2. Materials and methods

In this study, the benchmark dataset consists of two parts of DNA
sequences. The first one is for analyzing nucleosome positioning, and
the 2nd one for studying the genomic sequence patterns around some
important functional sites.

2.1. Benchmark dataset for nucleosomal and linker sequences

In literature, the benchmark dataset usually consists of a train-
ing dataset and a testing dataset: the former is constructed for the
purpose of training a proposed model, while the latter for the pur-
pose of testing it. As pointed out in a comprehensive review [34],
however, there is no need to separate a benchmark dataset into a
training dataset and a testing dataset for validating a prediction
method if it is tested by the jackknife or subsampling (K-fold)
cross-validation because the outcome thus obtained is actually
from a combination of many different independent dataset tests.
Therefore, the benchmark dataset for the current study may consist
of a positive subset and a negative subset: the former contains only
nucleosomal DNA sequences while the latter contains only the linker
DNA sequences.
The reference genome sequence of Saccharomyces cerevisiaewas ob-
tained from the Saccharomyces Genome Database (SGD, http://www.
yeastgenome.org/). The experiment-confirmed nucleosome positions
of S. cerevisiae were taken from Lee et al. [7], where each of the
1,206,683 DNA fragments in the dataset constructed by these authors
had been assigned a nucleosome formation score using a lasso model,
with the high or low score to reflect its high or low propensity in
forming nucleosome, respectively. The low score can also be interpreted
as the propensity to inhibit the formation of nucleosome. Thus, the 5000
fragments of 150 bp with the highest scores were selected as the nucle-
osomal sequences and the 5000 fragments of 150 bp with the lowest
scores were selected as the non-nucleosomal (or linker) sequences.

Also, as elaborated in [33], a benchmark dataset containing high
similar samples would be lack of statistical representativeness. In
the present study, to avoid the redundancy and reduce the homology
bias, sequences with more than 80% sequence similarity were re-
moved by using the CD-HIT program [35]. After such a screening pro-
cedure, the final benchmark dataset contains 3620 samples, of which
1880 are nucleosomal sequences belonging to the positive subset,
and 1740 are linker sequences belonging to the negative subset.
The detailed sequences thus obtained are given in Online Supporting
Information S1.

2.2. Benchmark datasets for genomic sequences around functional sites

The experiment-confirmed 3600 DSB hotspots in endogenous chro-
mosomal sequences were taken from Pan et al. [36]. The DNA sequence
contexts from −500 bp to +500 bp flanking each of the DSB hotspot
centers were extracted. The detailed sequences thus obtained are
given in Online Supporting Information S2.

The 6637 SNP data for the S. cerevisiae were taken from Schacherer
et al. [37]. The DNA sequence contexts from −500 bp to +500 bp
flanking each of the SNP sites were extracted. The detailed sequences
are given in Online Supporting Information S3.

The 322 experiment-confirmed ORIs were extracted from the
OriDB database [38]. The DNA sequence contexts from −500 bp
to +500 bp flanking each of the ORIs were extracted. The detailed
sequences are given in Online Supporting Information S4.

2.3. Use deformation energy scores to represent DNA samples

Deformability of DNA is important for its superhelical folding in
the nucleosome and can be reflected by the DNA step parameters,
including three local angular parameters (twist, tilt, and roll) and
three translational parameters (shift, slide, and rise). This suite of
parameters has important roles in various biological processes,
such as protein–DNA interactions, formation of chromosomes, and
higher-order organization of the genetic material in a cell nucleus
[21,39,40].

As demonstrated by Tolstorukov et al. [41], the deformation energy
of the n-th segment generated by 150-bp sliding window along a DNA
sequence of L in length can be defined by [41]

ED nð Þ ¼
X150
k¼1

Ed n; kð Þ; 1 ≤ n ≤ L−150ð Þ ð1Þ

where Ed(n,k) is the deformation energy of the 2-tuple base pair at the
k-th step. There are total ten possible 2-tuple base pairs in a DNAdouble
stranded structure (dsDNA), as given by
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where the two characters right before the slash line (/) denote the
2-mer along one of its two single strands (ssDNA), while the two

http://www.yeastgenome.org
http://www.yeastgenome.org
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characters right after the slash line denote the 2-mer along the other
strand; the two strands run opposite direction to each other as
shown by the arrow above the nucleotide codes. The values of
Ed(n,k) in Eq. (1) can be estimated by the following function based
on the fluctuations of step parameters from their equilibrium values
[42]:

Ed n; kð Þ ¼ 1
2
∑6

i¼1∑
6
j¼1 f ij n; kð ÞΔθiΔθ j ð3Þ

where i (or j) corresponds to the six base-pair parameters (twist,
roll, tilt, shift, slide, and rise), Δθi=θi -θi0 is the deviation of the i-th
step parameter θi from its equilibrium state θi0 caused by imposing the
nucleosomal template characteristic of the corresponding 2-tuple
base-pair, and fij(n,k) is the element of the stiffness matrix FðmÞ associ-
atedwith them-th base-pair (m=1,2,⋯ ,10) of Eq. (2) that can be for-
mulated by a 6×6 matrix given below

F mð Þ ¼ 1
kBT

C mð Þ

¼

f twist�twist
f twist�tilt
f twist�roll
f twist�shift
f twist�slide
f twist�rise

f twist�tilt
f tilt�tilt
f tilt�roll
f tilt�shift
f tilt�slide
f tilt�rise

f twist�roll
f tilt�roll
f roll�roll
f roll�shift
f roll�slide
f roll�rise

f twist�shift
f tilt�shift
f roll�shift
f shift�shift
f shift�slide
f shift�rise

f twist�slide
f tilt�slide
f roll�slide
f shift�slide
f slide�slide
f slide�rise

f twist�rise
f tilt�rise
f roll�rise
f shift�rise
f slide�rise
f rise�rise

2
6666664

3
7777775
ð4Þ

where kB is the Boltzmann constant, T is the absolute temperature, and
CðmÞ is the covariance matrix of them-th base-pair step. More descrip-
tion about the covariance matrix and deformation energy can be found
in [43,44] and [41,42], respectively.

Based on the 35 crystal structures of nucleosomes deposited in
the Protein Data Bank (PDB), Yang and Yan [45] have deduced the
deformation energy for each of the ten 2-tuple base-pairs in
Eq. (2). Since the relative deformability of steps is independent of
the value of kBT, similar to the treatment of Yang and Yan [45], we
also set kB and T to 1. Therefore, instead of being the real energy
with the unit of joule, the deformation energy defined in Eq. (1) is ac-
tually a kind of energy score.

2.4. Operate prediction with discrimination function approach

Similar to the approach in identifying HIV protease cleavage sites
[46] and predicting the enzyme's specificity [47], based on the deforma-
tion energy of a DNA segment as defined in Eq. (1), we can define a dis-
crimination function given by [48]

Δ nð Þ ¼ ED nð Þ �R 1≤n≤L� 150ð Þ ð5Þ

where R is a modified factor [49] or cutoff threshold; its value is de-
termined by optimizing outcome as will be mentioned later. Thus,
we have

Nucleosomal sequence; if Δ nð ÞN0
Linker DNA; otherwise

�
ð6Þ

the discrimination function approach has been successfully used to
predict HIV protease cleavage sites (see, e.g., [46,48–52] and a re-
view paper [53]).

2.5. A set of metrics for quantitative analysis

To facilitate the quantitative analysis, in this study we used a set
of more intuitive and easier-to-understand metrics formulated
with the symbols introduced by Chou [54] in studying signal peptide
prediction. According to Chou's formulation, the sensitivity Sn, spec-
ificity Sp, overall accuracy Acc, and Matthews correlation coefficient
MCC can be expressed as [55,56]

Sn ¼ 1� Nþ�
Nþ

0 ≤ Sn ≤ 1

Sp ¼ 1� N�þ
N�

0 ≤ Sp ≤ 1

Acc ¼ Λ ¼ 1� Nþ� þ N�þ
Nþ þ N�

0 ≤ Acc ≤ 1

MCC ¼
1� Nþ� þ N�þ

Nþ þ N�

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ N�þ � Nþ�

Nþ

� �
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N�

� �s �1 ≤ MCC ≤ 1
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ð7Þ

whereN+ is the total number of the positive samples or nucleosomal
sequences investigated, while Nþ� the number of nucleosomal se-
quences incorrectly predicted to be of linker sequences; N- the total
number of the negative samples or linker sequences investigated,
while N�þ the number of the linker sequences incorrectly predicted
to be of nucleosomal sequences.

According to Eq. (7), the following are obvious. WhenNþ�=0mean-
ing none of the nucleosomal sequences was incorrectly predicted be-
longing to linker sequences, we have the sensitivity Sn=1. When
Nþ�=N+ meaning that all the nucleosomal sequences were incor-
rectly predicted belonging to linker sequences, we have the sensitiv-
ity Sn=0. Likewise, when N�þ =0 meaning none of the linker
sequences was mispredicted, we have the specificity Sp=1; where-
as N�þ=N- meaning that all the linker sequences were incorrectly
predicted as nucleosomal sequences, we have the specificity Sp=0.
When Nþ�=N�þ=0 meaning that none of nucleosomal sequences in
the positive dataset and none of the linker sequences in the negative
dataset were incorrectly predicted, we have the overall accuracy
Acc=1 and MCC=1; when Nþ�=N+ and N�þ= N- meaning that all
the nucleosomal sequences in the positive dataset and all the linker
sequences in the negative dataset were incorrectly predicted, we
have the overall accuracy Acc=0 and MCC= -1; whereas when
Nþ�=N+/2 and N�þ=N-/2 we have Acc=0.5 and MCC=0 meaning
no better than random guess. As we can see from the above discussion,
it would make the meanings of sensitivity, specificity, overall accura-
cy, and Mathew's correlation coefficient crystal clear by using the
metrics formulated in Eq. (7) rather than the conventional formula-
tion, particularly for the meaning of MCC, as concurred by a series of
recent publications [6,22–31,57–65].

It should be pointed out, however, the set of equations defined in
Eq. (7) is valid only for the single-label systems. For themulti-label sys-
tems whose emergence has become more frequent in system biology
[66–68] and systemmedicine [69], a completely different set of metrics
is needed as elucidated in [70].

3. Results and discussion

3.1. Discrimination of nucleosomal and linker sequences

To analyze the correlation of the nucleosomal sequences with their
deformation energies, a comparison was made between the nucleoso-
mal and linker sequences based on their deformation energies calculat-
ed with Eqs. (1)–(4).

Quite interestingly, it was observed that the deformation energy of
nucleosomal sequences was remarkably higher than that of the linker
sequences as shown in Fig. 1, implying that DNA sequences need
more deformation energy to wrap around the histone octamers to
form nucleosomes.

Accordingly, it is rational to use Eqs. (5)–(6) to discriminate the
nucleosomal sequences from the linker sequences along a dsDNA.
It was found by the 10-fold cross-validation on the benchmark



Fig. 1. Illustration to show the frequency spectrums of the deformation energy (cf. Eq. (1))
for the nucleosomal segments (black) and linker segments (red), respectively. The
deformation energies of the former are remarkably higher than those of the latter. See
the main text for further explanation.

72 W. Chen et al. / Genomics 107 (2016) 69–75
dataset (Online Supporting Information S1) that, when the threshold
R of Eq. (5) was equal to 426.35, the success rates (Eq. (7)) in iden-
tifying nucleosomal sequences reached their peaks; i.e., when R ¼ 4
26:35, we have

Sn ¼ 0:982
Sp ¼ 0:980
Acc ¼ 0:981
MCC ¼ 0:963

8><
>: ð8Þ

The above results indicate that the accuracy is very high regardless
which one of the four metrics in Eq. (7) is used for the performance
measurement.

To further show the performance of our model, we also compared
the performance of our model with that of iNuc-PhysChem [15].
Fig. 2. Illustration to show the nucleosome occupancy profile predicted by the energy def
experiments are also shown. According to the top down order, they are the genomic posi
maps in vivo for YPD, ethanol, and galactose [71], respectively. Depicted in the lowest p
for more explanation.
The predictive results obtained by iNuc-PhysChem with the 10-fold
cross-validation on the same benchmark dataset (Online Supporting In-
formation S1), was given below

Sn ¼ 0:972
Sp ¼ 0:943
Acc ¼ 0:967
MCC ¼ 0:936

8><
>: ð9Þ

As we can see from Eqs. (8)–(9), the proposed biophysical model
outperformed iNuc-PhysChem [15] in all the four metrics, indicat-
ing that the new model based on the deformation energy may be-
come a useful tool in identifying nucleosomal sequences, or at the
very least play a complementary role to the existing methods in
this area.

Furthermore, the proposed model was also validated on the
S. cerevisiae genome through a comparison between the nucleosome
positions predicted by Eq. (6) and those determined by experiments
[71]. The comparison was carried out in a 20 k-bp genomic region on
chromosome 14 of the S. cerevisiae genome. As can be seen from
Fig. 2, the profile of nucleosome occupancy predicted by the defor-
mation energy approach is notably similar with the experimental
maps of nucleosome organization, demonstrating once again that
the deformation energy is indeed a very important factor for nucleo-
some positioning prediction.

Particularly, it is instructive to point out that, unlike most machine-
learning predictors [12–16], our model is more like ab initio one since it
basically needn't go through the tedious training process, as will be fur-
ther manifested by using it to study the distribution of nucleosomes
around the following DNA functional sites.

3.2. Nucleosome positioning around double strand break (DSB) hotspots

Meiotic recombination is an important biological process. As a
main driving force for evolution, recombination provides natural
newcombinations of genetic variations [55,72]. Recombination inmeiosis
occurs via a developmentally programmed pathway that forms numer-
ous DNA double-strand breaks (DSBs) [73]. The regions where DSBs
ormation model of Eq. (3). For facilitating comparison, the corresponding profiles by
tion on the chromosome, the experimental map in vitro, as well as the experimental
anel is the nucleosome occupancy profile by the proposed model. See the main text



Fig. 3. The statistical profile of deformation energy around the DSB hotspot sites. The
horizontal axis represents the genomic position ranging from −500 bp to +500 bp
with the DSB hotspot site at the center or 0. The vertical axis represents DNA
deformation energy. See the main text for more explanation.

Fig. 5. DNA deformation energy profile around origin of replication (ORI). DNA
deformation energy was smoothed using a 150 bp sliding window with 1 bp step.
The horizontal axis represents the genomic position, which ranges from −500 bp
to +500 bp relative to ORI (denoted as 0). The vertical axis represents DNA
deformation energy.
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form preferentially [36] are called DSB hotspots, which are usually with
the presence of open chromatin structure, certain histone modifications,
and sequence-specific transcription factors being bound at some loci
[74]. But the detailed mechanism of how these factors affect the forma-
tion of the DSB hotspots is not quite clear yet.

To address this problem,we analyzed the nucleosome occupancy for
S. cerevisiae genome via the following procedure. By sliding a 150-bp
window (with 1-bp step at a time) along each of the 3600 samples in
Online Supporting Information S2, we extracted 1000–150 + 1 = 851
segments, followed by using Eq. (5) to calculate their deformation ener-
gies, respectively. The results thus obtained are given in Fig. 3, from
which we can see that that DSB hotsopts occur nearly exclusively in
nucleosome-depleted regions, fully consistent with the previous findings
that nucleosome-depleted regions provide the opportunities for DSB for-
mation [36]. The loose chromatin structure and the openness of the
promixal regions surrounding DSB hotspots as shown in Fig. 3 may
Fig. 4.DNAdeformation energyprofile around single nucleotide polymorphism (SNP) site.
DNA deformation energy was smoothed using a 150 bp sliding window with 1 bp step.
The horizontal axis represents the genomic position, which ranges from −500 bp to
+500 bp relative to SNP site (denoted as 0). The vertical axis represents DNA
deformation energy.
facilitate the binding of the topoisomerase-related Spo11 protein, which
plays a predominant role in initiating meiotic recombinations [36].
3.3. Nucleosome positioning around single nucleotide polymorphism (SNP)

It has been demonstrated that SNP sites are generally located at
nucleosome-depleted regions in the human genome [75]. Yet the
sequence patterns of nucleosomes near to the SNP sites in the
S. cerevisiae genome remain to be clarified. Using the same approach
as described in the last section to analyze the 6637 samples given in
Online Supporting Information S3, we obtained the corresponding
statistical (or average deformation energy) profile for the SNP sites, as
shown in Fig. 4. It can be seen from the figure that nucleosomes are
also depleted in the region near to the SNP site, suggesting a negative
correlation between nucleosome occupancy and genetic variation.
This is because the nucleosomal sequences are evolutionarily more
conserved than the linker sequences [76], so as to protect them from
mutations. That is why the SNP tends to locate at the nucleosome de-
pleted regions.
3.4. Nucleosome positioning around origin of replication (ORI)

DNA replication is thought of a most highly regulated process as far
as the interactions between regulatory proteins and DNA sequences are
concerned. The initiation of DNA replication is also regulated by chro-
matin structure. To in-depth study this problem, we used the same
approach as described in Section 3.2 once again to calculate the defor-
mation energy for the 322 experiment-confirmed ORIs in Online
Supporting Information S4. The results thus obtained were used to
depict the average deformation energy profile for the nucleosome posi-
tioning pattern in the vicinity of ORI, as shown in Fig. 5. It can be ob-
served from the figure that the core replication region (0–+250 bp) is
flanked by two well-positioned nucleosomes at its both sides, which is
quite consistentwith the previous experimental reports by the previous
investigators [5,77] that nucleosomes are depleted in the core replica-
tion region but are well positioned in the flanking regions of ORI. The
low nucleosome density in the core replication region suggests an
open chromatin structure that may help the binding of recognition
complex and facilitates origin firing [78].
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4. Conclusions

Our model has demonstrated that the deformation energy plays a
key role in discriminating nucleosomal sequences from DNA linker
sequences.

Unlike most machine-learning predictors, our model is more like ab
initio one as reflected by the fact that, although it has basically not un-
dergone the tedious training process, it can be directly and successfully
used to predict the distribution of nucleosomes around someDNA func-
tional sites, such as DSB, SNP, and ORI.

It is anticipated that the deformation energy model as presented in
this paper will stimulate a series of new and more powerful methods
for predicting nucleosome positioning.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.ygeno.2015.12.005.
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