Web of Science InCites Journal Citation Reports Essential Science Indicators EndNote Publons Sign In ▼ Help English ▼

Web of Science

Search Search Results

My Tools ▼ Search History Marked List

Add to Marked List

157 of 752

The Role of Mixed Graphene/Carbon Nanotubes on the Coating Performance of G/CNTs/Epoxy Resin Nanocomposites

By: Hussein, MA (Hussein, Mahmoud A.)^[1,3]; Abu-Zied, BM (Abu-Zied, Bahaa M.)^[1,2,3]; Asiri, AM (Asiri, Abdullah M.)^[1,2]

View ResearcherID and ORCID

INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE

Volume: 11 | Issue: 9 | Pages: 7644-7659

DOI: 10.20964/2016.09.13

Published: SEP 2016

View Journal Impact

Abstract

There is no doubt that, epoxy resin is one of the most important materials that has been widely used in coating technology. The present work is aimed to fabricate a new series of epoxy resin nanocomposites in the form of G/CNTs/EPY1-4 using simple dissolution method and ultrasonic assistance. The expected nanocomposites have been fabricated using 10% loading of different mixed ratios from G/CNTs. Four different G/CNTs mixed ratios were used 20/80%, 40/60%, 60/40%, and 80/20%. The structure of the G/CNT/EPY1-4 nanocomposites has been investigated and confirmed by normal characterization techniques including: X-ray diffraction (XRD), Fourier transforms infrared spectroscopy (FT-IR), Thermogravimetric analysis (TGA), Differential Thermal gravimetry (DTG) and field emission scanning electron microscopy (FE-SEM). T-25 and T-50 values for G/CNT/EPY1-4 nanocomposites were slightly higher than elegant epoxy. R-500 values for the fabricated materials were in the range of 8.98-10.04%. Furthermore, the role of mixed G/CNTs on the coating properties of epoxy resin was determined using electrochemical impedance and technique. The coating resistance of epoxy composites in the form of G/CNT/EPY1-4 was larger than that observed for elegant epoxy coating. G/CNT/EPY3 and G/CNT/EPY1 showed highest and the lowest coating impedance values respectively. In addition to that, the water sorption technique has been used as a complementary method for such coating behaviour. The water uptake was efficiently decreased in all the formulations compared to the epoxy due to the presence of G/CNTs reinforcing agents.

Keywords

Author Keywords: Epoxy resin; Mixed Graphene/Carbon nanotubes; Coating performance; Electrochemical impedance

KeyWords Plus: CONDUCTIVE POLYMER COMPOSITES; EPOXY-RESIN; MECHANICAL-PROPERTIES; THERMAL-CONDUCTIVITY; DIELECTRIC-PROPERTIES; CARBON NANOTUBES; NANOPARTICLES; FABRICATION; FILMS; COMBINATIONS

Author Information

Reprint Address: Hussein, MA (reprint author)

King Abdulaziz Univ, Fac Sci, Dept Chem, POB 80203, Jeddah 21589, Saudi Arabia.

Organization-Enhanced Name(s)
King Abdulaziz University

Reprint Address: Hussein, MA (reprint author)

Assiut Univ, Fac Sci, Dept Chem, Assiut 71516, Egypt.

Addresses:

Citation Network

1 Times Cited

47 Cited References
View Related Records

â Cuan

Create Citation Alert

 $(data\, from\, Web\, of\, Science\, Core\, Collection)$

All Times Cited Counts

- 1 in All Databases
- 1 in Web of Science Core Collection
- 0 in BIOSIS Citation Index
- 0 in Chinese Science Citation Database
- 0 in Data Citation Index
- 0 in Russian Science Citation Index
- 0 in SciELO Citation Index

Usage Count

Last 180 Days: 12 Since 2013: 23

Learn more

Most Recent Citation

View All

This record is from: Web of Science Core Collection

- Science Citation Index Expanded

Suggest a correction

If you would like to improve the quality of the data in this record, please suggest a correction.

[1] King Abdulaziz Univ, Fac Sci, Dept Chem, POB 80203, Jeddah 21589, Saudi Arabia

Organization-Enhanced Name(s)

King Abdulaziz University

[2] King Abdulaziz Univ, CEAMR, POB 80203, Jeddah 21589, Saudi Arabia

Organization-Enhanced Name(s)

King Abdulaziz University

+ [3] Assiut Univ, Fac Sci, Dept Chem, Assiut 71516, Egypt

E-mail Addresses: maabdo@kau.edu.sa

Funding

Funding Agency	Grant Number
Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah	CEAMR-SG-7- 437
CEAMR	

View funding text

Publisher

ESG, BORIVOJA STEVANOVICA 25-7, BELGRADE, 11000, SERBIA

Categories / Classification

Research Areas: Electrochemistry

Web of Science Categories: Electrochemistry

Document Information

Document Type: Article

Language: English

Accession Number: WOS:000384908100029

ISSN: 1452-3981

Other Information

IDS Number: DY2FI

Cited References in Web of Science Core Collection: 47

Times Cited in Web of Science Core Collection: 1

157 of 752