Web of Science

A Facile Surface Passivation of Hematite Photoanodes with Iron Titanate Cocatalyst for Enhanced Water Splitting

By: Wang, L (Wang, Lei)^[1,2]; Nguyen, NT (Nhat Truong Nguyen)^[1]; Schmuki, P (Schmuki,

View ResearcherID and ORCID

CHEMSUSCHEM

Volume: 9 Issue: 16 Pages: 2048-2053

DOI: 10.1002/cssc.201600462 Published: AUG 23 2016 **View Journal Impact**

Abstract

The surface modification of semiconductor photoelectrodes with passivation overlayers has attracted great attention as an effective strategy to improve the charge separation and charge transfer processes across the semiconductor-electrolyte interface. In this work, a thin Fe2TiO5 layer was decorated on nanostructured hematite nanoflake and nanocoral photoanodes (by thermal oxidation of iron foils) by a facile water-based solution method. Photoelectrochemical measurements show that the Fe2O3/Fe2TiO5 heterostructure exhibits an obvious enhancement in photoelectrochemical water oxidation performance compared to the pristine hematite. For example, at 1,23V versus the reversible hydrogen electrode (V-RHE) in 1m KOH under AM1.5G (100mWcm(-2)) illumination, a 4-8x increase in the water oxidation photocurrent is achieved for Fe2O3/Fe2TiO5, and a considerable cathodic shift of the onset potential up to 0.53-0.62V(RHE) is obtained. Moreover, the performance of the Fe2O3/Fe2TiO5 heterostructure can be further improved by decoration with a SnOx layer. The enhancement in photocurrent can be attributed to the synergistic effect of Fe2TiO5/SnOx overlayers passivating surface states, and thus reducing surface electron-hole recombination.

Author Keywords: hematite; iron titanate; passivation layer; tin oxides; water splitting KeyWords Plus: ATOMIC LAYER DEPOSITION; OXIDATION; ARRAYS; TIO2; PERFORMANCE; OVERLAYERS; EFFICIENCY; NANORODS; CATALYST; FE2TIO5

Author Information

Reprint Address: Schmuki, P (reprint author)

Germany.

Reprint Address: Schmuki, P (reprint author)

King Abdulaziz Univ, Dept Chem, Jeddah, Saudi Arabia.

Organization-Enhanced Name(s)

King Abdulaziz University

Addresses:

- 1 J Univ Erlangen Nuremburg, Dept Mat Sci & Engn, LKO WW4, Martensstr 7, D-91058 Erlangen, Germany
- 📘 [2] Chinese Acad Sci, State Key Lab Oxo Synth & Select Oxidat, Natl Engn Res Ctr Fine Petrochem Intermediates, Lanzhou Inst Chem Phys, Lanzhou 730000, Gansu, Peoples R China
- [3] King Abdulaziz Univ, Dept Chem, Jeddah, Saudi Arabia

Citation Network

5 Times Cited

34 Cited References

View Related Records

Create Citation Alert

(data from Web of Science Core Collection)

All Times Cited Counts

5 in All Databases

5 in Web of Science Core Collection

0 in BIOSIS Citation Index

0 in Chinese Science Citation

Database

0 in Data Citation Index

0 in Russian Science Citation Index

0 in SciELO Citation Index

Usage Count

Last 180 Days: 17 Since 2013: 48

Learn more

Most Recent Citation

Wang, Lei. Enhanced Solar Water Splitting by Swift Charge Separation in Au/FeOOH Sandwiched Single-Crystalline Fe2O3 Nanoflake Photoelectrodes . CHEMSUSCHEM, JUL 10 2017.

View All

This record is from: Web of Science Core Collection

- Science Citation Index Expanded

Suggest a correction

If you would like to improve the quality of the data in this record, please suggest a correction.

Organization-Enhanced Name(s)

King Abdulaziz University

E-mail Addresses: schmuki@ww.uni-erlangen.de

Funding

Funding Agency	Grant Number
DFG	
	SPP1613

View funding text

Publisher

WILEY-V C H VERLAG GMBH, POSTFACH 101161, 69451 WEINHEIM, GERMANY

Categories / Classification

Research Areas: Chemistry; Science & Technology - Other Topics

Web of Science Categories: Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE &

TECHNOLOGY

Document Information

Document Type: Article
Language: English

Accession Number: WOS:000383267600004

PubMed ID: 27348809 ISSN: 1864-5631 eISSN: 1864-564X

Journal Information

Table of Contents: Current Contents Connect **Impact Factor:** Journal Citation Reports

Other Information

IDS Number: DV9NN

Cited References in Web of Science Core Collection: 34

Times Cited in Web of Science Core Collection: 5

183 of 752

© 2017 CLARIVATE ANALYTICS TERMS OF USE PRIVACY POLICY FEEDBACK